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6. Potential Vorticity Hydraulics. 
 
 
 
6.1  Introduction 
 
 
 To this point we have dwelt with applications in which the velocity of the current 
is comparable with the speed of long, internal gravity waves.  This situation can arise in 
channels, along coastlines, in the lee of mountains, or in other special locations, but is 
less likely to occur in the relatively slow and broad general circulation of the ocean or 
atmosphere.   Even the jet-like currents such as the Gulf Stream tend to be substantially 
subcritical with respect to long, gravest-mode, internal gravity waves. On the other hand, 
Rossby waves and other types of potential vorticity waves are important to the general 
circulation. As discussed in Section 2.1, these waves depend on lateral gradients of 
potential vorticity to provide a restoring mechanism.  For the gradients that typically exist 
in geophysical applications, the waves are generally much slower than long gravity 
waves and can wave speeds in the range of the current velocity. 
 
 Hydraulic behavior associated with potential vorticity waves, sometime called 
‘Rossby wave hydraulics’, has been identified in a variety of idealized models, including 
those of free jets, fronts and coastal currents. The subject is reviewed by Johnson and 
Clarke (2001). One of the difficulties with this subject, at least at the time of this writing, 
is that there is very little concrete evidence of this behavior in observed flows.  However, 
the field is relatively young and the phenomena may be present but not yet recognized. 
This chapter will present several examples of the type of behavior predicted.  An 
important departure from the hydraulics of gravity-driven systems is that the motion of 
the fluid is primarily sideways (or along isopycnals) and thus classical jumps, spilling 
flows, and other features that require significant vertical motion are not present. 
 
 Some insight can be gained from the nonrotating flow considered in Section 2.9, 
where a free-surface gravity wave and a discrete spectrum of potential vorticity waves 
were present.  There, an infinite family of hydraulically controlled flows was found, one 
having a hydraulic transition with respect to the gravity mode and the others with respect 
to a particular mixed gravity/potential vorticity mode.  The hydraulic transition for the 
gravity mode was manifested primarily by a change in depth as the fluid crossed the sill, 
whereas the transition for the higher potential vorticity modes involved lateral 
displacements of streamlines.  In order to examine the potential vorticity dynamics more 
carefully, it will be helpful to consider simpler systems in which the gravity wave is 
absent and just one or two of the potential vorticity modes are present.  The gravity wave 
can be eliminated by making the quasigeostrophic approximation, discussed below, or by 
considering a homogeneous fluid bounded above by a rigid lid.  The number of potential 
vorticity modes can be limited by considering flows with piecewise linear potential 
vorticity distributions.   
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 Since gravity waves will be relatively unimportant, we need to rethink the 
standard hydraulic scaling in which (gD)1/2  and L / (gD)1/ 2  are chosen as scales for the 
longitudinal velocity and time. For larger scale flows, Earth’s rotation and the variation 
of rotation with latitude are of central importance and we need to select scales based on 
the Coriolis parameter f = 2! sin" , where !  is Earth’s angular velocity and θ  is 
latitude.  For the applications in mind, which include ocean and atmosphere fronts, jets 
and coastal currents, the variation in θ is small compared to its full range and it is 
sufficient to approximate f according to 
 

    
f (!) = f (!o ) + 2"(! #!o )cos!o

       = fo + $ * y *
   

 
where y* = R(! "!

o
) , !* = 2" cos(#

o
) / R , and R is Earth’s radius.  If L represents the 

meridional extent of the current, then β*L/fo<<1 for this beta plane approximation to be 
valid.  An obvious time scale is fo

-1 and we will leave the velocity scale U unspecified. 
 
   The appropriate scaling can now be deduced by reconsidering the shallow water 
equations (2.1.1-2.1.3) with no forcing or dissipation: 
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In most applications the equations apply to a 1 1

2
! layer system for which g should be 

interpreted as reduced gravity. Where the active layer lies along the bottom, η* should be 
interpreted as upwards displacement of the bounding interface from its resting 
equilibrium position.  Application to a buoyant surface layer can also be made by 
interpreting η* as the downwards displacement of the lower interface.  
 
 Nonrotating hydraulics (Chapter 1) involves balances between the advection 
terms, the local time-derivative terms, and the pressure gradients terms.  Semigeostrophic 
hydraulics includes these terms, at least in the predominant direction of the flow, and 
adds the Coriolis term.   The scaling U=(gD)1/2 is preserved.  For the slower, broader 
flows subject to beta plane hydraulics, U is typically << (gD)1/2 and another scaling must 
be sought.  There are two classes of flows that one is likely to encounter depending on the 
size of the Rossby number Ro= U/foL. The first is characterized by Ro=O(1) and includes 
strong jets such as the Gulf and Jet Streams and some equatorial currents.  Hydraulic 
models of these flows are typically treated using a barotropic, rigid-lid model and this is 
described at the end of this section.  The second class includes broad-scale flows and 
weaker jets in which both horizontal velocity components are in near geostrophic 
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balance. Such flows can be treated using the quasigeostophic approximation, in which the 
velocities are considered weak and variations in layer thickness are assumed small.  
Quasigeostrophic flows have both velocity components in near geostrophic balance, 
whereas semigeostrophic flows have only the longitudinal velocity in near geostrophic 
balance.  Thus, if N is a scale for η*, the quasigeostrophic approximation suggests that 
N ! foLU / g .  It can also be seen from (6.1.1) that the ratio of the advection terms to the 
Coriolis term is on the order of the Rossby number Ro=U/foL, and this ratio must clearly 
be small in the presence of nearly geostrophic motion.  The final term to consider in 
(6.1.1) is the local time derivative; its ratio to the Coriolis term is  O(T-1f-1).  In order that 
the geostrophic balance be preserved to lowest order, the time scale T must be chosen 
much longer than an inertial period (T >> f

!1
) .  A convenient choice is T= Ro

-1 f-1. 
 
 For the quasigeostrophic approximation, we then use dimensionless variables 
η=η*g/ foUL, (u,v)=(u*,v*)/U, (x,y)=(x*,y*)/L, and t=t*fRo.  Equation (6.1.1) now 
becomes 
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where β=β*L2/U and Ro <<1.  The dependent variables are now expanded in powers of 
Ro: 
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 The leading order velocity is geostrophic: 
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showing that η(0) acts as a streamfunction.    
 
 The dimensionless version of the continuity equation  (6.1.2) is 
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where S =
fo
2L2

gD
, the square of the ratio of the horizontal length scale to the Rossby 

radius of deformation Ld = (gD)
1/2
/ fo .  If the active layer is on top, the term involving 

h* is absent.  If the typical horizontal scale of the motion is on the order of the Rossby 
radius, then S=O(1). Variations in the layer thickness due to the interface displacement η 
are then O(Ro).  This fact can be seen simply from the scaling relations 
N / D = foUL / gd = SRo

!1 .  What about the contribution to the layer thickness from 
topographic variations?  The lowest order approximation is 
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which uses the fact that !"u

(0)
= 0 .  If h*/D is O(1), geostrophic flow must move along 

contours of constant h*.  This topographic steering would imply that a current would 
have to move around an isolated topographic feature such as a ridge.  Hydraulic effects 
tend to occur when the flow passes over topography and this is permissible in the current 
framework only when h*/D is small.  We therefore assume that h*/D=O(Ro) and so 
define h= h*/ (Ro D).  We have now constrained variations in the layer thickness to be  
small compared to the total thickness, an approximation that is also considered integral to 
quasigeostrophic theory. 
 
 
 At the O(Ro) level of expansion, (6.1.3) and (6.1.6) are 
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Taking the curl of the first equation and using the second equation to eliminate u(1) from 
the result leads to the quasigeostrophic potential vorticity equation: 
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The same result could have been obtained directly from the shallow water potential 
vorticity equation (2.1.8) by applying the present scaling and approximations (Exercise 
1).  The variable part of potential vorticity (! * + f ) / d *   is approximated by 
!2"(o) # S"(o) + h + $y . The relative vorticity is !2

"
(o) , the stretching term resulting from 
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departures from constant layer thickness is ! S"(o) + h , and the departure from constant 
ambient vorticity is βy. 
 
 Now consider a plane wave of the form  
 
   !(0) = Re Ne

i(kx+ ly"# t )$% &'  
 
propagating over a horizontal bottom and in the presence of a uniform zonal flow of 
velocity U

o
.   It is left as an exercise to show that the wave frequency is given by 
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The resulting speed of the crests and troughs in the x-direction is 
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A wave that is long (k2 << l2 + S) in the x-direction propagates in that direction at the 
speed U

o
! " / (l2 + S) .  In order for the wave to be arrested (ω/k) it is necessary for that 

flow to be eastward (Uo>0).  In addition the magnitude of Uo must be at least as large as 
β/S , or 
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The dimensionless parameter can be thought of as a beta-plane Froude number, and 
(6.1.9) is a prerequisite for the occurrence of hydraulic effects in the quasigeostrophic 
model. The specific conditions for the criticality of a particular flow with respect to a 
potential vorticity wave will generally be much more involved.  In some applications β* 
may be replaced by a potential vorticity gradient due to topography or background shear.  
 
 An alternative approach that illustrates Rossby-wave hydraulics without the 
complication of gravitational effects is the rigid-lid, barotropic model.  No restriction is 
placed on the size of Ro or h*/D, but stratified systems are excluded.  The governing 
equation is obtained directly from (2.1.8) by regarding the depth d*(x*,y*) as fixed.  In 
the absence of forcing and dissipation the result is 
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Since the Rossby radius of deformation is effectively infinite, the horizontal length scale 
L is typically set by the topography or potential vorticity distribution.  Velocity and time 
scales are then chosen as β*L2 and β*L. 
 
 Most of the models of Rossby-wave hydraulics involve zonal flows and it is 
standard to use x* as the predominant direction of flow.  We will therefore switch from 
the earlier convention of using y* as the flow axis. 
 
 
Exercises 
 
1)  Beginning with the unforced shallow-water potential vorticity equation (2.1.8 with 
F*=0) apply the scaling and assumptions appropriate to the quasigeostrophic 
approximation and thereby derive equation (6.1.6).   
 
2)  Verify that the frequency of a plane wave solution to (6.1.6) is given by (6.1.9). 
     
  


