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6.2  Potential vorticity front in a channel. 
 
 
 One of the simplest models for exploring the physics associated with potential 
vorticity gradients is based on a material contour separating two regions of different, 
uniform potential vorticity.   The following development is due to Haynes et al. (1994) 
and Johnson and Clarke (1999, 2001), who considered the situation in which the potential 
vorticity front is confined to a channel with a mean flow.  In a certain sense, the model is 
that obtained from the channel problem of Sec. 2.9 if the gravity mode is eliminated 
(using a rigid lid) and the number of potential vorticity modes is reduced to one. 
  
 Consider a zonal channel occupying 0<y*<w* and containing a homogeneous 
flow capped by a rigid lid.  The statement of conservation of potential vorticity is given 
by (6.1.10), with  
 
    d*=D-h*(x*,y*).      (6.2.1) 
 
Although β* is taken as zero, variations in ambient potential vorticity will arise due to 
variations in h*.  It is assumed that such variations are weak (h*<<D) and, therefore, that 
the horizontal velocity is approximately nondivergent: 
 
    ! "(u*) = 0 .       
  
In this case a streamfunction ψ* exists, with v* = !" * /!y * , u* = !"# * /"x * .  Under 
these conditions the shallow water potential vorticity can be approximated as  
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 Suppose that the bottom topography consists a topographic step: 
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0     (y*>Yh * (x*))

!h *   (y*<Yh * (x*))  
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,    (6.2.3) 

 
where δh*/D<<1. The shallow fluid lying on the shelf to the ‘right’ side of the channel 
(facing positive x*) implies relatively high potential vorticity there, at least in the absence 
of other vorticity gradients.  (This configuration reverses the usual situation on a beta 
plane, where high potential vorticity occurs to the north.) The jump in potential vorticity 
across the step gives rise to a class of waves closely related to topographic Rossby waves  
(Section 2.1).  These waves propagate forward (towards positive x*) but can be arrested if 
a negative mean flow is added.  For example, if the step lies at mid-channel Yh*=w*/2 
and a uniform flow u*=-α * is present, the wave frequency ω* is given in terms of the 
wave number k* by 
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   !* = "k *# * +
fo$h*

2D
tanh[12 k*w*]   (6.2.4)  

 
(see Exercise 1). Short waves (k*<<1) are therefore advected downstream at the speed α 
of the background flow.  Long waves (k*w*<<1) have speed                              
c*=ω*/k*→-α*+1/4foδh*w*/D and are brought to rest when α*=1/4fow*δh*/D.  For 
smaller α* stationary, dispersive waves with downstream group velocity exist.  At higher 
speeds, all linear disturbances are swept downstream.  
 
  We wish to consider the effects of variations in the position Yh* of the step.  
Attention will be confined to cases where Yh* experiences an isolated narrowing of the 
shelf, centered at x*=0 (Figure 1).  Far upstream and downstream, it will be assumed that 
the step lies at channel midpoint (Yh*→1/2). In addition, the flow is assumed to be 
initially quiescent, so that the perturbation potential vorticity (!2" * /D) + ( foh * /D

2
)  is 

initially zero on the deeper side of the channel (y*> Yh* (x*)) and has a value foδh*/D2 on 
the shallower side (y*< Yh* (x*)). At t*=0+, a uniform velocity u*=-α* is imposed, 
causing some fluid to cross the step, carrying with it its initial potential vorticity.  The 
material contour or ‘front’ y*=Y*(x*,t*) separating the low and high potential vorticity no 
longer coincides with the position of the topographic step.  Conservation of potential 
vorticity for each fluid column then implies 
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 It is important to realize at the outset that the total volume transport in the channel 
must remain fixed as the flow evolves.  This property can be deduced from the condition 
of no normal flow along the channel side walls, which requires that ψ* be uniform there.  
Although the side-wall values of ψ* can generally vary with time, this is precluded by the 
nature of the initial value problem posed above.  The flow at y→±∞ remains fixed in time 
since disturbances generated by variations in Yh* propagate upstream and downstream at 
finite speeds.  The boundary values of ψ* and hence the total volume flux therefore 
remain fixed. Other transports including that of potential vorticity may be altered. 
 
  If variables are nondimensionalized using w*, D/foδh* and δh*fow*/D as 
horizontal length, time and velocity scales (the topographic equivalent of L, L/β, and 
βL2), the previous relation becomes  
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Initially shallow(deep) fluid that crosses the step into the deeper(shallower) region will be 
stretched(squashed) and its relative vorticity will be incremented by an amount +1(-1). 
The fluid vorticity is therefore piecewise constant as shown in Figure 6.2.1b. Solutions to 
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(6.2.5) in the various regions can be matched by requiring that ψ  remain continuous 
across the boundaries of the regions.  The potential vorticity front itself is a material 

boundary and its motion obeys the kinematic relation v = !"

!x
=
!Y

!t
+ u(x,Y, t)

!Y

!x
, which 

can also be expressed as 
 

    !Y

!t
=
d

dx
" (x,Y(x,t), t)    (6.2.6) 

 
 With the present scaling, the Rossby number U/foL becomes δh*/D, which is <<1 
by prior assumption.  The velocity is therefore geostrophically balanced and the model 
can be considered quasigeostrophic but with an essentially infinite Rossby radius of 
deformation (i.e. S=0 in 6.1.6). 
 
 
(b)  Long-wave behavior. 
 
 In the usual manner of hydraulic analysis we begin by considering the long wave 
behavior of the flow induced when the along-channel variations of the step position are 
gradual in comparison with cross-channel variations.  In particular, let 
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where ˜ x = µ

1/ 2
x and µ<<1. The stream function can be written as a sum of the 

contribution from the background velocity -α  imposed at t=0+ plus the residual φ: 
 
    ! = "y +#( ˜ x ,y,˜ t ) ,    (6.2.8) 
 
where ˜ t = µ

1/ 2
t .  [The slow time variable associated with gradual variations in the x-

direction is suggested by (6.2.6).]  
 
 Equation (6.2.5) now becomes 
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  (6.2.9) 

            
where H(y)=1 for y>0 and H(y)=0 for y<0. The boundary conditions ψ=0,α at y=0,1 
imply  
 
 
   !(˜ x ,0, ˜ t )= !(˜ x ,1, ˜ t )= 0     (6.2.10) 
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 For small µ the solution to (6.2.9) subject to (6.2.10) may be written as  
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and (6.2.6)  then gives 
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 In the long-wave limit the O(µ) terms in (6.2.11) are neglected, leaving the 
hyperbolic equation 
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Long-wave disturbances therefore propagate at the characteristic speed  
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In the absence of variations in Yh the value of Y is conserved following this speed. The 
presence of just one wave is another point of departure from the types of problems we 
have been studying.  There have typically been two waves with speeds, c+ and c-, and the 
flow has been labeled supercritical or subcritical according to c+c->0 or c+c-<0.  Here the 
flow will be called supercritical if c<0; that is, if wave propagation is in the same 
direction as the background flow.  For the initial upstream state (Y=Yh=1/2), c reduces to 
1/4-α  and therefore this flow is supercritical when  α>1/4.  A Froude number for this 
upstream flow can therefore be defined by 
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    Fo = 4! =

4! * D

fo"hw *
, 

 
which can be considered a form of U/βL2 if U =α*, L=w*, and β*=foδh/Dw*. 
 
 If the flow is steady, the potential vorticity front is a streamline, ψ=ψo say, and the 
position of the front is determined by  
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 The function !
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o
may be treated as Gill’s   G  and the critical condition 

 !G / !Y = 0  is clearly equivalent to c=0.  The relationship between Y and Yh depends on 
the initial flow speed (or equivalently the transport) α, and this dependence is reflected in 
a the selection of contour plots of !

h
(Y,Y

h
)  shown in Figure 6.2.2.   In the absence of 

jumps or other dissipative features, solutions must lie along the contours.  A solution 
originating from an upstream condition Y=Yh=1/2 must lie along the contour that passes 
through the center of the plane and the corresponding contour value is ψo=-α/2.  The 
segments of contours with positive tilt correspond to subcritical c>0 flow, while negative 
tilts correspond to supercritical flow. Maxima or minima in Yh along a contour 
correspond to critical flow and it can be seen that the curves have zero, one or two such 
extremes.  Although the presence of two extremes suggests the possibility of two control 
sections within the same solution, one would involve a supercritical-to-subcritical 
transition subject to the instability described in Section 1.4.  Still, the presence of two 
extremes makes for a richer variety of possible steady flow configurations.  
 
 Now consider some examples in which the position of the step is given by (6.2.7). 
Fix the amplitude ε of the excursion of the step at 0.15 and consider a sequence of initial 
value problems with progressively larger transports: α =0.05, 0.1, 0.15, and 0.3.  (The 
corresponding initial upstream Froude numbers are 0.2, 0.4, 0.6, and 1.2.)  The families 
of possible steady solution curves corresponding to these transports are shown in Figures 
6.2.2a,c,e,g.  The potential vorticity front initially coincides with the step but will evolve 
in time, possibly reaching a steady state for t→∞. The expected final state for each case is 
indicated by a thick line overlaid on the contours and a plan view showing the 
corresponding front and step positions appears in the frame to the right (6.2.2b,d,f, or h).  
In some cases the position Y∞ of the front far upstream is unchanged from its initial value 
(Y∞=0); that is, no upstream influence exists. In other cases this upstream state is altered.  
The final steady states can be grouped into four classes: 
 
Type S: Subcritical flow (α=0.05, so Fo=0.2)  Referring to figure 6.2.2a, we attempt to 
construct a steady solution beginning upstream (Y=Yh=1/2) corresponding to the very 
center of the contour plot.  The tilt of the contour that passes through this point is 
positive, so the flow is subcritical.  The solution over the remainder of the channel lies 
along an S-shaped curve that passes through this point.   Proceeding downstream from 
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the origin, this curve is traced in the lower left direction as Yh decreases, as suggested by 
the solid line in the figure.  When the minimum Yh is passed the solution is retraced back 
to the origin. The result is a symmetrical, subcritical solution (Frame b). 
 
Type CC:  Flow controlled at the contraction: (α=0.1 so Fo=0.4)  Here the larger value 
of α  causes the excursions of the S-shaped curves to decrease.  If one proceeds as in the 
first case, tracing along the curve that passes through the origin, the lower extreme of this 
curve is reached before the maximum step amplitude is encountered.  Since it is 
impossible to continue along the same curve, we must assume that the upstream condition 
is no longer valid.  Proceeding as in earlier examples of this type, we find the new value 
of Y∞ by demanding that the flow be critical at the crest  (Yh=0.35) of the step. The 
appropriate solution curve has an extremum at this value. The full solution is then 
constructed by tracing that curve along its subcritical branch upstream and along the 
supercritical branch downstream (vice versa would lead to an unstable flow).  This trace 
is shown in Frame c and the corresponding solution in Frame d.  The new value of Y∞ for 
this solution is >1/2, meaning that the upstream position lies on the deeper side of the 
step.   
 
Type AC:  Approach control with supercritical leap: (α=0.15, so Fo=0.6)  If α is further 
increased the topography of the solution plane can change to the point where a 
contraction controlled solution is no longer viable (see Frame 6.2.2e).  One begins as in 
the previous example by assuming the flow is critical where Yh reaches it minimum value, 
in this case 0.35.   The presumptive solution lies along the contour that achieves a 
minimum in Yh at this value, and this is indicated by a dashed line in Figure 6.2.2e.  
However, trouble arises when one attempts to trace the subcritical branch of this curve 
upstream.  A maximum in Yh is encountered before the upstream value (Yh=0.5) is 
reached. The solution cannot be continued beyond this point.  Direct solution of the initial 
value problem for this case suggests a new type of steady solution in which the upstream 
flow itself is critical  (akin to ‘approach control’ of two-layer flow, as discussed in 
Chapter 5.)  The corresponding solution contour has a maximum at Yh=0.5.  If one 
proceeds downstream, a decision must be made as to which branch of the curve to follow.  
Selection of the subcritical branch would give rise to an unstable situation in which 
disturbances generated downstream would propagate upstream, only to encounter an 
approaching critical flow.  The same accumulation of disturbance energy that marks a 
supercritical-to-subcritical transition would be in play.  Selection of the supercritical 
branch avoids this difficulty and we therefore trace along this branch as the narrowest 
point of the shelf is passed.  This trace is indicated by arrows along the solid line in 
Figure 6.2.2e. However, continuing downstream would require retracing the supercritical 
branch of the curve back to the extremum, so that the downstream flow would also be 
critical and the instability mentioned above would come into play.  In fact, direct 
simulations show that the solution jumps to the other supercritical branch of the S-shaped 
curve, as suggested in the figure. This jump is called a supercritical leap and the 
corresponding solution is shown in Figure 6.2.2f.  There is a range of possible Yh values 
at which the leap can occur and the true value can be ascertained using jump conditions 
(see Johnson and Clarke, 1999). 
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Type SR: Supercritical flow: (α=0.3 so Fo=1.2) If the transport is strong enough, the S-
shape character of the solution curves is lost and only supercritical flow is possible.  Here 
solutions with no upstream influence are easily constructed.  A typical example is shown 
in Figures 6.2.2g,h. 
 
 For given α (or equivalently Fo), the predicted steady solution depends upon the 
value of ε as described in the previous examples.  Analysis of the function !

h
(Y,Y

h
)  

allows one to determine the boundaries between the four different flow regimes and these 
boundaries are indicated in Figure 6.2.3.  Keep in mind that the initial upstream flow is 
critical (Fo=1) when α=1/4.  It is notable that flows with approach controls (AP) occupy a 
relatively large region of the parameter space. If the upstream position of the step is not at 
mid-channel, then the regime diagram is different.  A key difference is the emergence of 
the fifth type of steady flow, the twin supercritical leap.  These features are discussed by 
Johnson and Clarke (1999).  
 
 
(c)  Simulations based on contour dynamics. 
 
 Haines et al. (1994) verified the above solutions by solving the initial value 
problem of the complete potential vorticity equation (6.2.5) using the method of contour 
dynamics1 (CD). The governing equation and procedure are very similar to those 
introduced in Section 3.2 and a sample of results is shown in Figures 6.2.4-6.2.7.  In all 
cases the dashed line represents the steady solution that would be obtained by the above 
long wave theory. 
 
 Two examples of flow developing from initial conditions in the subcritical region 
of Figure 6.2.3 are shown in Figure 6.2.4. The position Yh of the step and the predicted 
steady long wave solution are shown along with the result of the CD simulation as it 
nears a steady state.  In (a) the variation in Yh is very gradual and the final steady solution 
resembles that of Figure 6.2.3a.  The main departure is the presence of small lee waves in 
the CD simulation.  In (b) the same initial conditions and step excursion ε are used but 
the scale of variation of Yh is shorter and, in fact, well outside the long-wave 
approximation.  The scale of topographic variations in this case is closer to the scale of 
the lee waves, and the latter are more efficiently generated.  
 
 Solutions with a contraction control can be generated if the value of ε is increased 
sufficiently.  The resulting upstream influence leads to an increase in Y∞ above its value 
of 0.5.  The characteristic wave speed in this situation increases with increasing Y and 
thus the disturbance is a rarefaction (Exercise 4)].  These expectation are born out in CD 
simulations (Figure 6.2.5) that also exhibit prominent short wave effects in the lee of the 
contraction.  In Frame (a), which shows a case of gradually varying Yh, an undular bore 
                                                
1 The procedure is similar to that described in Section 3.3.  The Green’s  function continues to be that 
defined by (3.2.13) but the potential vorticity distribution is complicated by the presence of the topographic 
step. 
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develops in the lee of the contraction.  It can be seen propagating slowly downstream. 
The leading wave crest is close to the point of pinching off and forming a detached eddy.  
In (b) the topographic feature has been shortened with the result that the undular bore has 
been replaced by nearly discontinuous bore, again propagating downstream slowly.  A 
counterclockwise eddy has been ejected from the bore.  
 
 The establishment of a flow with an approach control begins in a similar manner 
(Figure 6.2.6a).  A rarefaction wave is generated at the contraction and this disturbance 
moves upstream, increasing the value of Y∞.  In the contraction itself, the flow undergoes 
a subcritical-to-supercritical transition and a downstream bore develops.  So far the 
evolution is similar to the previous case.  However, the region of flow just upstream of 
the contraction begins to evolve in a new manner, as evidenced by a steepening of the 
front into an abrupt bend (Frame b). Although the bend first forms upstream of x=0, it 
slowly moves downstream and settles into a fixed position (frame c).  The final steady 
state can be compared to the long-wave solution (thicker line in Frame c) obtained by 
introducing a supercritical leap at the highest value of x for which it can occur.  It is 
notable that the supercritical leap calculated using CD is smooth and shows no signs of 
turbulence or energy dissipation, suggesting the energy conservation could be a basis for 
the formulation of the jump condition.  We return to this topic later. 
 
(d)   Dispersion 
 
 The CD simulations reveal the presence of lee waves, undular bores, supercritical 
leaps, and other features that lie outside of the realm of long-wave theory. An advantage 
of the present model is that these dispersive, short-scale effects can be explored with 
relative ease.   One way to gain some insight is to include the previously neglected O(µ) 
corrections to the streamfunction in (6.2.11).   It will be convenient to switch back to the 
original coordinates, with x and t replacing ˜ x / µ

1/ 2  and ˜ t / µ1/ 2 , but the reader should 
keep in mind that the resulting expressions are approximations, valid to O(µ).   
 
 One of the most important elements added by dispersion is the ability of 
disturbances of finite scale to remain stationary in the flow.  If the position of the step is 
held constant, these disturbances are governed by the steady form of (6.2.11) with fixed 
Yh.  Integration of this relation with respect to x yields 
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where ψo is a constant.  If the upstream flow is independent of x, then ψo can be 
interpreted as the value of ψ on the potential vorticity front.  However, in contrast to the 
previous analysis, the upstream flow is not constrained to be parallel.  Multiplication of 
this relation by ∂Y/∂x and integration with respect to x leads to 
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where M is a constant and 
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 Solutions to (6.2.15) are represented by contours of constant M in the ‘phase 
space’ (Y, !Y / !x) .  As an example, the contours for the case Yh=0.5, α=0.1, and ψo=α/2 
are plotted in Figure 6.2.7a.  There are three fixed points (0.5,0) and (0.5±.38,0) 
corresponding to parallel flows (Y=constant).  The first of these corresponds to the 
upstream flow assumed in the initial value problem; the front lies at the position of the 
step and both are at mid-channel.  Since α<1/4, this flow is subcritical.  The surrounding 
closed orbits represent periodic stationary waves. The small orbits in the immediate 
vicinity of the fixed point are essentially the linear stationary waves corresponding to 
ω*=0 in (6.2.4). As one moves away from the fixed point the wave amplitude increases 
until a heteroclinic trajectory joining the remaining fixed points is reached.  Both points 
represent uniform supercritical flows, a fact that can be shown directly from (6.2.14) or 
deduced from the property that they support no small amplitude stationary waves.   The 
trajectories that join the two points correspond to solutions for which Y varies 
monotonically over -∞<x<∞ from one supercritical state to the other (Figure 6.2.7b). The 
solution is sometime referred to as a kink soliton.  Since the supercritical leap shown in 
Figure 6.2.6c occurs over such a small interval in x, the change in Yh from one side of the 
leap to the other is relatively small.  For this reason, the kink soliton can be regarded as 
an approximation to a leap2. 
 
 Although the phase plane solutions are valid for a fixed step position, one can 
anticipate the effect of a gradually varying Yh by allowing the actual solution trajectory to 
gradually move from one contour to the next in Figure 6.2.7a.  (In reality, the contours 
change as Yh changes, but this is more difficult to visualize.) As an example, consider a  
solution that is subcritical and parallel far upstream of the shelf contraction.  The 
upstream state corresponds therefore to the subcritical fixed point in Frame (a).  As one 
moves downstream and encounters the region of variable Yh the solution moves away 
from the fixed point, crossing the closed orbits.  Downstream, where Yh returns to its 
upstream value of 0.5, the solution remains on one of the closed orbits.  Each orbit has a 
different value of M, which can be interpreted as the momentum flux of the solution 
(Johnson and Clarke, 2001). The change in M from the fixed point to the final closed 
orbit is due to wave drag (form drag) occurring in the constriction.  This drag generally is 
at its greatest when the x-scale of the topography is comparable to the wave length of lee 
waves and this can result in a downstream orbit that lies quite far from the subcritical 
fixed point.  For the solution shown in Figure 6.2.4a Yh varies gradually (µ <<1) and the 
lee waves are small, corresponding to orbits close to the fixed point.  In Figure 6.2.4b, 
where µ is O(1), the lee wave orbits are larger.   

                                                
2 Note, however, that the kink soliton of Figure 6.2.7b does not represent the supercritical leap of Figure 
6.2.6c. 
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 In some cases, the form drag may be sufficient to force the solution to cross the 
heteroclinic trajectory in Figure 6.2.4a, so that the downstream flow lies on an open 
trajectory.  The latter do not represent acceptable end states since they lead to unbounded 
values of Y far downstream.  In this case an upstream disturbance must be generated, 
altering the value of ψo and leading to a new phase plane with an expanded heteroclinic 
orbit.   Dispersion can thereby lead to a hydraulically controlled solution even though a 
perfectly valid subcritical, long-wave solution exists.  If the step does not lie at mid-
channel, the symmetry of the phase plane is lost and the supercritical fixed points are no 
longer connected.  Some of the consequences are explored in Exercise 6.  
 
 In order to make more explicit consideration of the effects of variations in Yh in 
the presence of dispersion, one can integrate the full steady version of (6.2.11) beginning 
with a given upstream state.  One of the difficulties in doing so is that wavy upstream 
states are now possible and there is no obvious reason to reject them.  This matter can be 
handled more cleanly by solving the full initial value problem using the full time 
dependent version of (6.2.11).  As reported by Johnson and Clarke (2001), the typical 
steady state solution that develops is a dispersion modified version of the expected long-
wave solution.  Among the effects of dispersion are the presence of lee waves or 
downstream undular bores, and the smoothing of features like supercritical leaps that are 
represented in the long-wave limit by discontinuities.   The function Y(x,t) is constrained 
to be single valued in x and therefore wave breaking or eddy pinching is not allowed.  
Solutions for values of α and ε that lie within the subcritical (S) portion of the regime 
diagram (Figure 6.2.3), but close to the boundary with CC, can evolve to hydraulically 
controlled flows of the AC type if µ is sufficiently large.  The loss of the subcritical 
solution suggested above is thereby confirmed.  Another consequence of dispersion is the 
failure in certain small regions of the (α,ε) parameter space for the solution to settle into 
steady state.  
 
 In flows with continuous variations in potential vorticity or other complexities, 
the hydraulic problem with dispersion becomes less tractable.  In such cases, progress can 
be made by assuming that the topographic variations (here measures by ε) are small and 
that the initial flow is close to the critical speed.  The proximity to criticality means that 
disturbances can be resonantly excited by variations in topography.  Weak nonlinearity 
and dispersion act at finite amplitude to limit growth and the resulting finite amplitude 
disturbances can be interpreted as hydraulic transitions, lee waves, and undular or 
monotonic jumps and bores. Solutions bear some similarity to the cases just discussed.  
The precise form of the evolution equation depends on the character of the wave guide.  
If the flow has imposed transverse scales such as channel width or the Rossby radius of 
deformation, and the extent of cross-stream motion is constrained by these scales, then 
the dynamics of nonlinear dispersion is generally governed by an equation of the KdV 
type (Section 1.11).   The long-wave limit in such cases can clearly be defined.  A case in 
which this constraint is absent occurs if the wall at y=1 in the Figure 6.2.1 channel is 
moved to infinity.  Although a long-wave approximation can still be defined for the fluid 
lying between the wall at y=0 and the potential vorticity front, it cannot be defined in the 
outer region.  There the y scale is simply the x-scale associated with variations in Y.  Such 
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cases arise naturally in coastal applications and are governed by Benjamin-Davis-Acrivos 
(BDA) type equations (see Grimshaw 1987 and Grimshaw and Yi 1990).  There is an 
extensive literature on this subject, much of it summarized by Johnson and Clarke (2001). 
 
 
e) Related Coastal Applications 
 
 The geometry of a typical continental shelf and slope (Figure 5.2.8a) can be 
crudely approximated by the step topography in the above model if the wall at y=1 is 
moved to infinity (Frame b).  The topographic wave in this limit decays away from the 
step in the offshore direction. If an opposing uniform current is added, the waves can be 
arrested and hydraulic behavior similar to that discussed above can arise.  A more 
realistic current, first proposed by Niiler and Mysak (1971), takes the form of an along-
shore jet with piecewise uniform shear (Figure 6.2.8c).  The jet velocity goes to zero at 
some offshore location and the ocean is considered quiescent further offshore.  There are 
now two potential vorticity fronts, one associated with the topographic step and one 
associated with the offshelf front.  As shown by Niiler and Mysak, the flow has two wave 
modes, the first being a ‘shelf’ wave that shares features with the topographic waves 
discussed in the above channel model.  The propagation speed of this wave may be  
positive or negative depending on the speed and frontal configuration of the jet.  As 
shown by Collings and Grimshaw (1980), supercritical jets tend to be narrow and 
subcritical jets tend to be wide, as measured by the distance between the coast and either 
potential vorticity front.  The second mode is a ‘shear’ wave that depends on the 
existence of the offshelf potential vorticity front.  It propagates in the same direction as 
the jet regardless of the parameter settings.  
 
 The shelf wave is a special case of a general class of coastal trapped waves that 
owe their existence to the presence of the topographic potential vorticity gradients 
associated with continental slopes and shelves.  In the absence of a background flow, the 
potential vorticity of the fluid increases towards the coast and Northern Hemisphere 
waves propagate keeping high potential vorticity (shallow water) on their right, i.e. in the 
same direction as a coastal Kelvin wave.  Hydraulic behavior with respect to these waves 
can occur in the presence of an opposing flow.  Hughes’ (1986b) investigation of the 
Niiler and Mysak model confirms that two conjugate states can occur for a given flow 
rate.  The first is a relatively wide, subcritical jet that allows upstream propagation of 
shelf waves; the second is a narrower and higher speed supercritical jet that carries shelf 
waves downstream.  The shear wave does not appear to be directly implicated in the 
hydraulic behavior.  However, instability can result from a resonance between the waves 
that can occur in the supercritical regime when their speeds become equal.  It is also 
suggested that transitions between the two regimes can occur as a result of changes in the 
shelf position, as was documented in the coastal model discussed in Section 4.2.   
 
  Similar behavior can be found if the topography and potential vorticity vary 
continuously (Hughes 1985a, 1986a and 1987). If the coastline is aligned with the y*-axis 
(north and south) then the cross-shelf (x*) structure of a homogeneous flow is governed  
by 



  © L.J Pratt and J. Whitehead8/18/06 
  very rough draft  

 

   !
!x *

1

d *

!" *
!x *

#
$%

&
'(
) d *q * ("*) = ) f ,   (6.2.16). 

 
just the barotropic potential vorticity equation for a gradually varying flow.  Here ψ* is 
the transport stream function (v *d* = !" * /!x *) and the full depth d* is determined by 
the specified bottom topography.  The solution procedure for the second order equations 
is to choose a potential vorticity distribution q*(ψ*) and assign a particular value of ψ* to 
the coastline.  A value of !" * /!x *  at the coast is then guessed and (6.2.16) is integrated 
in positive x* until v* vanishes.  The corresponding value of x* is then considered as the 
offshelf edge of the current and the fluid beyond  is assumed to be at rest.  A series of 
similar calculations with different coastal values of !" * /!x *yields a family of solutions 
with different widths and different transports.  However, it is possible to find two or more 
solutions with the same volume transport.   Hughes has shown how pairs of solutions 
with the same transport may be identified as conjugate states having the same transport 
and energy (see Exercise 7).  
 
 Although these flows are typically forced by along-shore changes in bottom 
topography, it is also possible to force the current by allowing the value of f to change.  
For a northwards (Northern Hemisphere) flow with the coast to the left (or southwards 
flow with the coast to the right) the increasing absolute value of f causes subcritical and 
supercritical conjugate states to approach each other, possibly merging and becoming 
hydraulically critical at a particular latitude.  However, unlike forcing due to topographic 
variations, the value of f does not reach a maximum value at the critical latitude but 
continues to increase in the northward direction.  The solutions cease to exist beyond this 
latitude, suggesting that the flow separates from the coastline (Hughes, 1989). 
 
 
     
Exercises 
 
 1.  Derivation of the linear dispersion relation (6.2.1).  
 
     (a)  Consider a channel with depth mean depth D and variable topography 
h=h(y).  Show that weak motion about a state of rest is governed by the topographic 
Rossby wave equation: 
 

    !

!t
"
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# +
!#

!x

dh

dy
= 0  

in the nondimensional units used above. 
 
    (b)  For a traveling wave with form ! = Re["(y)e

ik ( x#ct )
]  find the equation 

governing the cross-channel structure function !(y) . 
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    (c)  Now suppose that dh/dy=0, except near the channel midpoint y=1/2, where 
h changes abruptly from 1 to zero with increasing y.  Using the result obtained in (b) 
show that  
 

    d!

dy
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# $ 
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& ' 
( 1

2 h[ ] = 0  

 
where the brackets denote the change in the indicated quantity across the step. 
 
     (d)  Write down the separate solutions for !(y)  in the regions to the north and 
south of the step, apply the boundary conditions at the channel walls, and match the 
solutions using the result in (c) and the requirement that !(y)remain continuous across 
the step to obtain the dispersion relation 
 
    c = 1

2 k tanh
1

2 k( )  
 
and deduce the result by (6.2.4) by adding a background velocity -α and making the 
result dimensional.  
 
 2.  Consider the linear dispersion relation (6.2.4) for the case when the step and 
front lie at mid-channel.  According to (6.2.4) long waves are brought to rest when 
α*=1/4fow*δh*/D.  Try to obtain a similar estimate using the dispersion relation for 
waves in a channel with a constantly sloping bottom.  [A good place to start is to write 
down a version of (2.1.30), altered to account for a mean flow and a rigid lid.] 
 
            3.  Show that equation (6.2.5) is invariant to the change in variables ˆ y = 1! y , 
ˆ 
Y =1 ! Y , and ˆ Y 

h
= 1! Y

h
.  Using the fact that the initial condition Y=Yh is also invariant, 

conclude that if Y(x,t) is a solution than 1- Y(x,t) is also a solution for the case in which 
the position of the step is reflected about the channel axis (y=1/2).  By this means the 
solutions shown in Figures 6.2.4-6.2.7 can be used to construct the solution for the case 
in which the shelf width increases rather than decreases. 
 
 4.  Show that for Y>Yh, the characteristic speed is given 
byc = !" !

1
2 [3Y

2
! 2Y + Y

h

2
] .  Note the corresponding Froude number formula  

F
o
= !2" / [3Y

2
! 2Y + Y

h

2
] .  Show that an upstream disturbance which increases the 

value of Y over its undisturbed value 0.5 must be a rarefaction,and an upstream 
disturbance that increases Y∞ above its initial value (=0.5) is also a rarefaction. 
  
 5.  Show that the value of the potential  V(Y,Yh) is the same at the two supercritical 
fixed points in Figure 6.2.7a. [This result can be used as the basis for a matching 
condition across a supercritical leap, as discussed by Johnson and Clarke (1999).] 
 
 6. Using a contouring routine, construct a phase plane diagram akin to Figure 
6.2.7 for the case Yh=.55, α=1, and with the upstream position of the front located at the 
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step (ψo=.055).  Show that the two supercritical fixed points are no longer connected and, 
instead, that there is a closed (homoclinic) trajectory attached to one of these points.  
Describe the associated solution.  Draw a sketch showing the shapes of the stationary 
waves associated with the periodic orbits as the limiting homoclinic orbit is approached.  
(The resulting phase plane is given in Figure 6c of John and Clarke, 2001) 
 
 7.  Suppose that two distinct solutions to (6.2.16) are found for the same potential 
vorticity distribution and topography.  Both have the same transport and both can be 
smoothly joined to a quiescent region far offshore.  Show that the distribution of the 
Bernoulli function along streamlines is the same in each case.   
 
  
 
 
 
Figures 
 
6.2.1 Definition sketch. 
 
6.2.2a-h  Four realizations of the solution space Y vs. Yh for different background flows:  
(a): α=0.05, (c): α=0.1, (e): α=0.15, (g): α=0.3.  The bold overlaying curves show steady 
solutions for the case ε=0.15 and for the initial value Y∞=0.5.  These solutions are shown 
in plan view in the frames immediately to the right.  (Figure 2 from Johnson and Clarke, 
1999.) 
 
6.2.3  The regimes of steady, long wave solutions in terms of ε and α, all assuming the 
initial value Y∞=0.5.  (Based on Figure 9 of Haines, et al. 1993.) 
 
6.2.4  Contour dynamical solutions of the full barotropic equations for α=1/6π and ε=1/8. 
Frames (a) and (b) use obstacles of different lengths.  The position of the topographic 
step is shown as a dashed line, the predicted long wave solution by a thick solid line, and 
the CD solution by a thin and solid line.  (a):  µ1/2=π/(32)1/2 and t=102.  (b): µ1/2=π/2 and 
t=42.  Note x and t are the primitive, not the stretched, versions.  (From Haynes, et al. 
1993, but note that some parameter values differ from the published ones because of 
differences in scaling.) 
  
6.2.5  Figure 6 of HFH. Same as Figure 6.2.4 except that ε has been increased to 1/4.  
 
6.2.6  Development of an approach control with a supercritical leap. The parameters are 
the same as in Figure 6.2.5, but α  has been increased to 1/3π.  (a) The front at three time 
intervals up to t=18.  The dashed curve indicates the position of the step and the initial 
position of the front. (b)  The front (thin solid line) at t=26.5 has developed an abrupt 
bend just upstream of the contraction. Shown by thick solid line is a version of the steady, 
approach-controlled,  long-wave solution (dashed line) in which the supercritical leap 
occurs at the first opportunity.  (c) By t=77.5 the abrupt bend in the front has moved 
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downstream of the contraction and has settled into a steady state supercritical leap.  
(Based on Figure 11 of Haynes, et al. 1993) 
 
6.2.7  (a) Phase plane trajectories for (6.2.15) with Yh=0.5, α=0.1, and ψo=α/2. (b) The 
solution corresponding to the dashed trajectory of (a). (Figure 6 of Johnson and Clarke, 
2001).  
 
6.2.8  Step approximation (b) to a typical shelf topography (a).   Fame (c) shows a plan 
view of the coastal jet considered by Niiler and Mysak (1971).  
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