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We analyze the geometry of Lagrangian motion and material barriers in a time-dependent,

three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an

isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and

atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends

on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes

near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing

frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of

resonant trajectories and to investigate the resonant flow geometries. The resonance condition and

scaling can be motivated by simple physical argument. The theoretically predicted flow geometries

near resonant trajectories have then been confirmed through numerical simulations in a

phenomenological model and in a full solution of the Navier-Stokes equations. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916086]

Resonance phenomena, where a system’s response is

enhanced for certain forcing frequencies, arise in a

variety of different scientific disciplines from biology to

plasma physics. In geophysical fluid flows, resonances can

alter the geometry of Lagrangian motion, produce or

destroy transport barriers, and thus modify some of the

key oceanographic properties of the flow such as the abil-

ity of the system to redistribute tracers and mix water

masses. In this paper, we explore these ideas in applica-

tion to an oceanic eddy. Oceanic eddies help maintain the

large-scale hydrographic structure, stratification, general

circulation, and distribution of bio and geo-chemical

tracers throughout the World Oceans. Yet, the geometry

of Lagrangian motions and material barriers that exist

within an eddy, the exact mechanism by which eddies

trap and shape the tracer fields, as well as their response

to changing wind forcing are not totally understood. Our

work provides a piece of a puzzle by exploring the

Lagrangian geometry and investigating transport bar-

riers in an idealized model of an isolated oceanic eddy.

I. INTRODUCTION

Fluid flows that combine a horizontal swirling motion

with vertical overturning occur in hurricanes, ocean meso-

scale eddies, and many industrial applications involving lam-

inar mixing technologies. Relevant industrial flows include,

for example, flows inside a lid-driven cylindrical cavity or

rotating sphere (Znaien et al., 2012; Pouransari et al., 2010;

and Moharana et al., 2013). A classical model for ocean

applications is the “rotating can” flow (Fig. 1), in which fluid

is confined within a rigid rotating cylinder with solid vertical

walls and top/bottom lids. Different versions of this flow can

be driven thermally by heating/cooling of the bottom/top, or

by boundary stresses at the top/bottom surface induced, for

example, by rotating the lid at a slightly different speed com-

pared to the cylinder walls. Either mechanism will generate

vertical overturning in addition to the azimuthal rotation.

Both buoyancy and surface stress forcings can occur natu-

rally in oceanic flows due to the heat exchange with the

atmosphere and wind stresses, making the “rotating can”

flow a suitable, although highly idealyzed, model for study-

ing certain aspects of oceanic eddies. The Eulerian velocity

field produced in the “rotating can” setting, and in variations

thereof, has been the subject of numerous investigations

(e.g., Lopez and Marques, 2010 and references contained

therein) and is a central focus of Greenspan’s Theory of

Rotating Fluids (Greenspan, 1968). On the other hand, atten-

tion to Lagrangian aspects of the flow fields, including cha-

otic advection, Lagrangian transport barriers, and

implications for stirring and mixing, has been relatively lim-

ited. The main topic of the current study is the geometry of

Lagrangian motion and material barriers in a time-dependent

rotating can flow driven by the surface stress at the upper

surface.

The circulation in ocean eddies differs from that of the

homogeneous rotating can in many respects. An isolated

ocean eddy typically has an azimuthal velocity field that

decays away from the center and lies sufficiently far from

neighboring eddies as to be only weakly influenced by them.

In the rotating can, the circulation is laterally confined by

rigid cylinder wall, a common artifice used in idealized

models to limit the computational domain. Although real

eddies are influenced by surface winds, which can cause

upwelling and downwelling (e.g., McGillicuddy et al., 2007;

Ledwell et al., 2008), they are often generated by
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hydrodynamic instability and not directly by the wind stress.

In the rotating can, all motion seen in the rotating frame is

forced by the surface wind stress. Other neglected influences

of potential oceanographic importance include small scale

turbulence and density stratification, neither of which is pres-

ent in the rotating can model for a homogeneous flu id at

moderate Reynolds number. Despite these limitations, the

3D circulation in the rotating can has the generic elements of

isolated ocean features with horizontal swirl and vertical

overturning, one reason that it has become a canonical model

fluid dynamics and the subject of hundreds of research

papers.

Chaotic advection in a three-dimensional cylinder flow

was studied by Fountain et al. (2000) for the case of steady

flow at low Reynolds numbers. The flow was driven near the

top by an impellor that can be tilted relative to the cylinder

axis. Background rotation was zero for most cases. When the

impeller tilt is zero, an axisymmetric flow is produced, with

upwelling in the interior, downwelling at the outer edges,

and an overall horizontal swirling. The independence of this

circulation on the azimuthal coordinate implies that for the

overturning flow, a transport stream function with closed

contours can be defined in the vertical (r, z)-plane, and this

implies that all fluid trajectories are confined to tori. Some

tori have quasiperiodic trajectories that never come back to

their exact starting point (these are illustrated by blue and

purple surfaces in Figure 1, although the details of our rotat-

ing can model differ from the one considered by Fountain

et al. (2000)), while others have periodic trajectories (illus-

trated by the green curve) that come back to their starting

point after each complete period of motion. If the impellor is

tilted, axial symmetry is broken and the tori with periodic

orbits become resonant. Chaotic trajectories are produced in

the vicinity along with new invariant tori. The latter resem-

ble twisted hulu hoops and are visualized by Fountain et al.

(2000) using dye injection in a laboratory model. As pre-

dicted by Cheng and Sun (1990); Xia (1992); and Mezic and

Wiggins (1994), some of the non-resonant tori survive the

symmetry breaking perturbation.

Pratt et al. (2014) considered a similar rotating can flow,

but with oceanographically important strong background

rotation induced by the fast rotation of the vertical cylinder

walls and bottom lid, and an imposed stress at the top surface

induced by a slightly different rotational speed of the top lid

compared to the walls. In the oceanographic context, this

surface stress could be due, for example, to wind forcing.

The velocity fields are generated by high-resolution numeri-

cal integration of the Navier-Stokes equations, and a range

of oceanograpically relevant Ekman and Rossby numbers

(Ek and Ro) is considered. For the rotating can flow, these

two dimensionless parameters completely describe the

parameter space of the system, and the Reynolds number can

be expressed through Ek and Ro. Generally speaking, Ekman

layers are generated at the top and bottom of the tank. If the

stress at the top surface is cyclonic, i.e., the top lid rotates

faster than the walls, the upper Ekman layer is divergent and

fluid is sucked up from the interior, and spun out to the outer

part of the cylinder, where it descends into a convergent bot-

tom Ekman layer and is returned up into the interior. There

is also a cyclonic azimuthal flow. When the surface stress is

purely azimuthal and axisymmetric, it is easy to show, again,

that all trajectories live on tori. When the imposed surface

stress is asymmetric, chaos is generated by the resonant

breakup of tori. The authors also used tracer release experi-

ments to quantify the overall stirring rate and show that it is

significantly enhanced by Lagrangian chaos.

Another mechanism by which chaos can be induced into

the system by the asymmetric surface stress is through the

breakup of the heteroclinic central streamline (which in

the axisymmetric steady background flow connects the

FIG. 1. (left) Schematic diagram

showing the Lagrangian geometry of a

steady axisymmetric rotating can flow.

The surfaces traced out by four trajec-

tories are shown with different colours.

Blue and purple surfaces are associated

with quasiperiodic trajectories; green

and black correspond to periodic tra-

jectories. (right) Action-angle-angle

variables ðI; h;/Þ.
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hyperbolic stagnation point at the bottom to the hyperbolic

stagnation point at the top) into one-dimensional stable and

unstable manifolds (1D curves in 3D space). In 2D fluid

flows, such 1D stable and unstable manifolds would repeat-

edly intersect each other, creating closed areas of fluid called

lobes, and facilitating chaotic advection via the lobe dynam-

ics mechanism (Rom-Kedar et al., 1993; Samelson and

Wiggins, 2006; and Rypina et al., 2010, 2011). In our 3D

flow, the role of 1D stable and unstable manifolds is less

clear as they cannot form lobes in 3D and thus cannot drive

the lobe dynamics. Associated with the hyperbolic stagnation

points at the top and bottom of the cylinder, there are also

2D stable and unstable manifolds (Mireles-James and

Lomeli, 2010; Lomeli and Ramirez-Ros, 2008). In the rotat-

ing can flow, which is confined within the rigid cylinder

walls, these manifolds coincide with each other and with the

outer cylinder walls in both the axisymmetric background

and the non-symmetric perturbed flow. If the flow was not

constrained by the presence of the rigid outer walls and was

allowed to interact with other eddies, the symmetry-breaking

disturbance could lead to the breakup of the outer boundary

of the eddy into two-dimensional stable and unstable mani-

folds (2D surfaces in 3D space), which would intersect each

other, form lobes, and facilitate chaotic exchange of fluid

between the interior and exterior of the cylinder via the lobe

dynamics. This mechanism is prohibited, however, in our

system due to the presence of the rigid cylindrical walls.

In a different version of the cylinder problem, Lackey

and Sotiropoulos (2006) consider the rotating can flow case

in which the bottom lid rotates in the opposite direction to

the top lid, and there is no rotation of the vertical cylinder

walls. This forcing results in the formation of separate,

counter-rotating cells at the top and bottom of the cylinder.

A steady perturbation can induce resonances within tori

belonging to either of the cells, and chaotic transport

between the cells.

Each of these investigations is confined to steady pertur-

bations of a steady background flow. In order to “nudge” this

body of work closer to ocean and atmospheric reality, we

now consider the case of time-dependent perturbations. We

will largely limit our discussion to time-periodic and quasi-

periodic disturbances, and will focus on the generation of

chaos through the resonant breakup of tori.

The results reported here differ from those obtained

from a widely-used, kinematic model of side-by-side con-

vection cells (Solomon and Mezic, 2003, and also see

Vainchtein et al., 2007, 2008), which is more complex in

some respects and simpler in others. In the “Solomon vortex

chain,” neighboring cells are in physical contact and are

allowed, under perturbation, to exchange fluid with each

other, a feature prevented by our rigid cylinder walls. On the

other hand, vertical motion is present in the perturbation and

not the basic state, so that there are two slow and one fast

variable (action-action-angle coordinates), similar to the case

considered by Cartwright et al. (1995, 1996). In our case,

vertical motion is present in the undisturbed state and the

system is best described by action-angle-angle coordinates

that provide a natural reference frame for our flow.

In Sec. II, we describe in more detail our version of the

rotating can flow, along with the phenomenological equa-

tions and full numerical model for the velocity fields. Then

in Sec. III, we formalize and extend the ideas of Zaslavsky

and Chirikov (1972); Zaslavsky (1985); and Rypina et al.
(2007a) to our 3D, time-dependent flow, and investigate the

behavior of the system in the vicinity of resonant tori using

multi-scale expansions that are carried out in terms of

action-angle-angle variables. The disturbance in our analysis

is decomposed into a set of waves that propagate around the

resonant torus in question. Conditions for resonance agree

with those found by Dullin and Meiss (2012) through a dif-

ferent argument. Our analysis yields to an approximate

analytical description of the flow near resonant tori, allowing

for investigating the geometries of Lagrangian motion within

resonant layers (Sec. IV). These theoretically-predicted

geometries are then tested numerically in Sec. V by produc-

ing resonances in the phenomenological model of the rotat-

ing can flow and in the full numerical solution obtained by

solving the Navier-Stokes equations. Throughout the discus-

sion, we attempt to illustrate and portray the geometry of

Lagrangian motion and transport barriers in Cartesian (x, y, z)

space using single and double stroboscopic sections, where

particle trajectory is strobed in time after each period of the

perturbation and then in azimuthal angle after completing

each full cycle in azimuth. Structures that are straightforward

to visualize in action-angle-angle space become twisted

and folded in the (x, y, z) space, and can be challenging to vis-

ualize. In addition, clear-cut visualizations using double

stroboscopic sections in the Navier-Stokes simulation are

numerically challenging due to the necessity of integration

over tens of thousands of cycles. We therefore add a tracer

release experiment to provide an alternative visualization

and to verify that dye is confined by the barrier in the way

anticipated from the theory.

II. ROTATING CAN FLOW

A. Flow geometry

The fluid flow that we are considering arises in a rotat-

ing cylinder with solid walls and top/bottom lids, whose top

lid rotates at a slightly different angular speed. The curl of

the surface stress leads to a divergence in the surface Ekman

layer and induced upwelling or downwelling. The resulting

circulation consists of both azimuthal swirling and vertical

overturning. For lid rotation slightly faster than that of the

cylinder, trajectories spiral up around the cylinder axis, then

spiral to the outside perimeter in the top boundary layer, then

spiral down within the wall boundary layer, and finally spiral

back towards the center near the bottom, so the cycle can be

repeated again. In the steady axisymmetric background state,

all trajectories lie on tori. As asymmetry and time-

dependence are introduced into the system through, for

example, off-center shift and oscillatory motion of the top

lid, some of the tori break down due to the excitation of

resonances, and chaotic motion becomes possible.
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B. Phenomenological model and full numerical
solution of the Navier–Stokes equations

A phenomenological model has been introduced in Pratt

et al. (2014) that describes all of the qualitative features of

this flow. Here, we use a similar phenomenological model as

well as a fully nonlinear numerical solution of the Navier-

Stokes equations to construct examples of resonances and

visualize the flow geometry within resonant layers.

Specifically, the phenomenological velocities are given by

u ¼ �bx 1� 2zð ÞR� r

3
� ay cþ z2ð Þ

þ � y y� y0 þ c cos rtð Þð Þ � R2 � r2

2

� �
1� bzð Þ; (1)

v ¼ �by 1� 2zð ÞR� r

3
þ ax cþ z2ð Þ

� �x y� y0 þ c cos rtð Þð Þ 1� bzð Þ;

w ¼ bz 1� zð Þ 2R

3
� r

� �
;

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, forcing period Tf ¼ 2p=r, and parame-

ter values R¼ 0.5 (cylinder radius), a¼ 0.62 (strength of azi-

muthal rotation), b¼ 7.5 (strength of vertical overturning),

c¼ 0.7 (the term (cþ z2) introduces deviation from the

solid-body rotation), b¼ 1 (strength of depth dependence),

c ¼ 0:2 (strength of time-dependence), and y0 ¼ �0:2 (shift

of the upper lid). The velocity field described by (1) is incom-

pressible (volume conserving) and satisfies the condition of

no-normal-flow at all solid boundaries. The O(1)-terms in the

right-hand side of (1) define the background flow and Oð�Þ-
terms represent the perturbation. The perturbation can be made

multi-periodic by introducing more frequency components, but

here, we use periodic forcing with only one r.

The fully numerical solution of the Navier-Stokes

equations was obtained using the spectral element model

Nek5000 (http:nek5000.mcs.anl.gov/index.php/Main_Page)

developed by Fischer and colleagues (Patera, 1984; Maday

and Patera, 1989; and Fischer, 1997). All system parameters

(Ek¼ 1/50, Ro¼ 0.2, Re¼ 10, cylinder radius R¼ 1 and cyl-

inder height H¼ 1) in our simulations are identical to those

used to produce Fig. 10(i) in Pratt et al. (2014). However,

instead of imposing a steady shift of the upper lid as in that

paper, here we impose a periodic oscillation of the upper lid

around its shifted position. The horizontal velocity imposed

at the upper lid is given by

u ¼ �4yð1� rÞ; v ¼ 4ðx� x0Þð1� rÞ; (2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and x0 ¼ X0 þ dX cos rt, where r ¼

2p=Tf is the forcing frequency, X0 ¼ �0:007, and dX¼ 0.005.

III. RESONANCES

Cheng and Sun (1990) and Xia (1992) showed that some

tori will survive a small-amplitude, time-periodic perturba-

tion of the axisymmetric, volume preserving flow that we are

considering. The surviving tori are non-resonant in some

sense, though there is no established method for

identification of the tori that survive. Fox and Meiss (2013)

used Greene’s residue criterion to predict the destruction of

tori and to identify the most robust torus, and Meiss (2012)

investigated the critical perturbation strength and the break-

up of the last invariant torus in a three-dimensional general-

ized standard map. We will concentrate instead on the

conditions for resonance, and the consequences for the

dynamics in the vicinity of a resonant torus. Our analysis

will be carried out in the action-angle-angle coordinates

defined by Mezic and Wiggins (1994). As shown in Figure 1,

the action variable I is a label for an undisturbed torus, while

h and / are angles that wrap around the tori in the azimuthal

and meridional directions. The angle variables are defined

such that the angular velocities are constants of motion,

denoted Xh and X/, respectively. The angle coordinates

therefore depend on the properties of trajectories on the

undisturbed tori and the general transformations are given by

Mezic and Wiggins (1994).

We now consider a perturbation of amplitude �, �� 1,

to the undisturbed velocity field. The trajectory equations

can then be written in the action-angle-angle variable set as

_I ¼ �F0ðI;/; h;~rtÞ; (3)

_/ ¼ X/ðIÞ þ �F1ðI;/; h;~rtÞ;
_h ¼ XhðIÞ þ �F2ðI;/; h;~rtÞ;

where I is the action variable, / and h are the two angle vari-

ables, and the perturbation is quasi-periodic in time with fre-

quencies ~r ¼ fr1;…; rng. Without loss of generality, the

frequency components ri can be assumed to be incommensu-

rate, otherwise frequency reduction will be possible.

The perturbation fields may be expanded in Fourier se-

ries as

ðF0;F1;F2Þ ¼
X1

n;m;l1;l2;…¼�1
F0

nm~l
ðIÞ;F1

nm~l
ðIÞ;F2

nm~l
ðIÞ

� �

� sin n/þ mh�~l �~rtþ anm~l

� �
; (4)

where n, m, and ~l ¼ fl1;…; lng are integers and anm~l are

phases.

In the remainder of this section, we discuss the condi-

tions for resonance for our 3D system, and we map out the

structures that arise in an isolated resonant layer. The discus-

sion begins in Subsection III A with physical interpretation

of the phenomenon of resonance, leading to an intuitive pic-

ture of the processes occurring near a resonant torus. This

discussion also suggests relevant time and amplitude scales

(Subsection III B), which are then used to motivate a more

formal development (Subsection III C) based on a multiple-

scale expansion. The geometry of the solution depends on

the number of independent resonant disturbances, and this is

dealt with in Subsection III D.

A. Resonances: Physical meaning

Note that each sin term in Eq. (4) consists of a progres-

sive wave that sweeps around the undisturbed tori. Each

such wave has quantized wave numbers n and m, and
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frequency~l �~r. The lines of constant phase are perpendicular

to the unit normal ~n ¼ ðn;mÞ=ðn2 þ m2Þ1=2
, and the wave

propagates in the normal direction with the speed

cnm~l ¼~l �~r=ðn2 þ m2Þ1=2
. These features are portrayed in

Fig. 2(a) in the periodic ð/; hÞ-plane, which can be thought

of as the flattened surface of a particular undisturbed torus

I¼ I0.

If the flow is only weakly disturbed, a fluid element

starting at I¼ I0 has an angular velocity very close to that of

the undisturbed flow: ~cp ¼ ðX/ðI0Þ;XhðI0ÞÞ. This velocity is

indicated by an arrow in Figure 2(a). If the component ~cp �~n
of this velocity normal to the phase lines matches the dis-

turbance phase speed cnm~l , then the fluid element remains

attached to a line of constant phase of the disturbance, and

resonance will occur. Use of the previous expressions for

cnm~l ; ~n, and~cp yield the resonance condition

nX/ðI0Þ þ mXhðI0Þ �~l �~r ¼ 0: (5)

Because of the phase locking, the contribution

�F0

nm~l
ðI0Þ sinðn/þ mh�~l �~rtþ anm~lÞ to the velocity of the

element normal to the torus will remain constant along the

fluid trajectory, and the later will move steadily away from

the torus I0, inward or outward depending on the phase.

Trajectories which happen to follow phase lines with phase 0

or p will experience no normal displacement due to the reso-

nant term. The trajectories are also potentially influenced by

other resonant forcing terms, and, to a smaller extent, by

non-resonant terms that are not phase locked with the fluid

parcel and whose phase oscillates in sign.

Note that if the forcing is steady (r¼ 0), then the lines of

constant phase are fixed and the condition for resonance is that

the parcel trajectory follows one of these fixed lines. Since the

disturbance is periodic in h and /, the lines of constant phase

must eventually close as they wrap around the torus, and thus,

the trajectory must also be periodic. Therefore, as noted in

Pratt et al. (2014), resonances under steady forcing can only

occur for tori with periodic trajectories.

B. Resonances: Scaling

Since the velocity normal to the torus is initially Oð�Þ,
the separation dI ¼ I � I0 of a trajectory from a resonant

torus increases in proportion to �t. As the trajectory moves

away from I0 and onto a new undisturbed torus I0 þ dI, its

angular velocity will generally change. To a first approxima-

tion, the new angular speeds are those of the undisturbed

flow at the new value of I, namely X/ðI0 þ dIÞ and

XhðI0 þ dIÞ. At the same time, the frequency~l �~r of the res-

onant disturbance remains unchanged, so resonance is gener-

ally lost. In fact, the resonance condition (5) applied at

I0 þ dI is

nX/ I0 þ dIð Þ þ mXh I0 þ dIð Þ �~l �~r

� dI n
dX/

dI
þ m

dXh

dI

� �
I¼I0

¼ 0; (6)

so, unless n
dX/

dI þ m dXh
dI

� �
I¼I0

¼ 0, the resonance condition

for the trajectory is violated by an amount proportional to

dI � �t. Recall that the left-hand side of Eq. (6) is propor-

tional to the difference between the phase speed of the dis-

turbance and the normal component of the trajectory

velocity, so that the difference between the phase of the

disturbance and the trajectory grows in proportion to �t2.

Thus, a trajectory that is phase locked to the disturbance at

t¼ 0 experiences a phase change of order p=2 over a time

period of Oð��1=2Þ, at which point the sign of the normal

velocity dI_ will reverse. Over this time period, dI will have

grown to Oð�1=2Þ. These arguments and scalings are similar

to what is found in nonlinear critical levels for waves in

shear flows (e.g., Maslowe and Clarke, 2002).

It is also possible that the terms involving the first deriv-

atives of X/ and Xh with respect to I in Eq. (6) may vanish,

meaning that, to the lowest order, the trajectory remains

phase locked to the disturbance as it drifts away from the

torus I0. In this case, the Taylor expansion of nX/ðI0 þ dIÞ
þmXhðI0 þ dIÞ must be carried out to the first nonzero (j-th)

derivative,
djðnX/þmXhÞ

dIj
jI¼I0

. j is often referred to as the order

of degeneracy, and j¼ 1 corresponds to the non-degenerate

case. The term on the right of Eq. (6) now becomes OðdIÞj

and grows in proportion to ð�tÞj. The phase difference

between the trajectory and the disturbance therefore grows in

proportion to
Ð
ð�tÞjdt ¼ �jtjþ1, and resonance is lost over

t � Oð��j=ðjþ1ÞÞ. At this stage, dI has grown to Oð�1=ðjþ1ÞÞ.FIG. 2. Schematic diagram of the resonance in terms of plane waves.
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C. Multiple-scale analysis near resonant tori

The most common case of resonance will be non-

degenerate (i.e., j¼ 1), and we now formalize the preceding

phenomenological discussion through the use of a multiple-

scale analysis. The procedure for degenerate cases (j> 1) is

similar and appears in Appendix A. For j¼ 1, we anticipate

that dI will grow to Oð�1=2Þ over a time of Oð��1=2Þ, suggest-

ing the expansions

dI ¼ �1=2dI0ðt; sÞ þ �dI1ðt; sÞ þ � � �
/ ¼ /0ðt; sÞ þ �1=2/1ðt; sÞ þ � � �
h ¼ h0ðt; sÞ þ �1=2h1ðt; sÞ þ � � � ;

where s ¼ �1=2t.
By the standard procedure for multiple-scale analysis,

we substitute the expansions into Eq. (3), treating t and s as

independent variables, and replacing time derivatives by
d
dt ¼ @

@tþ �1=2 @
@s. The equations for dI, h, and / then become

�1=2 @

@t
dI0 þ �

@

@s
dI0 þ �

@

@t
dI1 þ � � �

¼ �
X
nm~l

F0

nm~l
I0 þ �1=2dI0 þ � � �
	 


sin n /0 þ �1=2/1 þ � � �
	 
�

þ m h0 þ �1=2h1 þ � � �
	 


�~l �~rtþ anm~l � (7)

and

@

@t
/0 þ �1=2 @

@s
/0 þ �1=2 @

@t
/1 þ � � �

¼ X/ I0 þ �1=2dI0 þ � � �
	 


þ �
X
nm~l

F1

nm~l
I0 þ �1=2dI0 þ � � �
	 


� sin n /0 þ �1=2/1 þ � � �
	 


þ m h0 þ �1=2h1 þ � � �
	 
h

�~l �~rtþ anm~l � (8)

with a similar equation for h.

The lowest order approximation just describes motion of

the undisturbed flow

@dI0

@t
¼ 0;

@h0

@t
¼ Xh I0ð Þ;

@/0

@t
¼ X/ I0ð Þ:

Therefore

dI0 ¼ ~dI0ðsÞ; (9)

/0 ¼ X/ðI0Þtþ ~/0ðsÞ;

h0 ¼ XhðI0Þtþ ~h0ðsÞ:

Note that ~dI0ð0Þ; ~/0ð0Þ, and ~h0ð0Þ are set by the initial con-

ditions on dI, h, and /, which determine the trajectory one

wishes to compute.

At next order, we have

@

@t
dI1 ¼ �

@

@s
~dI0 þ

X
nm~l

F0

nm~l
I0ð Þsin ~gnm~l sð Þ

�
þ ðnX/ I0ð Þ þ mXh I0ð Þ �~l �~rÞt�; (10a)

@/1

@t
¼ � @

~/0

@s
þ dX/

dI

� �
I0

~dI0 ; (10b)

@h1

@t
¼ � @

~h0

@s
þ dXh

dI

� �
I0

~dI0 ; (10c)

where the slowly-varying part of the phase function is

~gnm~l ¼ n~/0ðsÞ þ n~h0ðsÞ þ anm~l . The terms on the right-

hand sides of Eqs. (10b) and (10c) are independent of t,
and thus, the solutions for /1 and h1 will grow linearly

in t. The asymptotic expansion would then become in-

valid after a time t � Oð��1=2Þ. To prevent this secular

growth, we must set the right-hand side terms to zero,

and thus

@ ~/0

@s
¼ dX/

dI

� �
I0

~dI0 ; (11a)

@ ~h0

@s
¼ dXh

dI

� �
I0

~dI0 ; (11b)

or

@~gnm~l

@s
¼ n

dX/

dI
þ m

dXh

dI

� �
I0

~dI0 : (12)

The first term on the right-hand side of Eq. (10a) is

independent of t, and any member of the second group

of terms will also be t-independent, provided that

nX/ðI0Þ þ mXhðI0Þ �~l �~r ¼ 0, which is the previously

identified resonance condition (5). To prevent secular

growth of dI1, we must have

@

@s
~dI0 ¼

Xresonant

nm~l

F0

nm~l
I0ð Þsin ~gnm~l

	 

: (13)

We note that (12) and (13) have the following integral

of motion with respect to the slow time variable

G ~dI0;~gn1m1
~l1
;~gn2m2

~l2
;…

� �
¼

~dI
2

0

2
þ
Xresonant

nm~l

F0

nm~l
I0ð Þcos ~gnm~l

	 

d nX/þmXhð Þ

dI
jI0

:

(14)

Note that there are at most two linearly-independent

coordinates ~gnm~l ; that is, if we define the two coordinates

~gn1m1
~l1
¼ n1

~/0ðsÞ þ m1
~h0ðsÞ þ an1m1

~l1
and ~gn2m2

~l2
¼ n2

~/0ðsÞ
þm2

~h0ðsÞ þ an2m2
~l2

such that (n2, m2) is not an integer multi-

ple of (n1, m1), then any other coordinate ~gn3m3
~l3
¼ n3

~/0ðsÞ
þm3

~h0ðsÞ þ an3m3
~l3

can always be expressed through a linear

combination of the first two coordinates with constant coeffi-

cients A, B, and C: ~gn3m3
~l3
¼ A~gn1m1

~l1
þ B~gn2m2

~l2
þ C. Thus,

G is most generally defined on the three dimensional space

½ ~dI0ðsÞ; ~gn1m1
~l1
ðsÞ; ~gn2m2

~l2
ðsÞ� or, equivalently,

½ ~dI0ðsÞ; ~/0ðsÞ; ~h0ðsÞ�.
For further interpretation, we consider the expansion

terms computed thus far
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dI t; sð Þ ¼ �
1
2 ~dI0 sð Þ þ � ~dI1 sð Þ �

Xnonres

nm~l

F0

nm~l
I0ð Þ

rnm~l I0ð Þ

2
4

� cos ~gnm~l sð Þ þ rnm~l I0ð Þt
	 
#

þ O �
3
2

	 

; (15a)

/ ¼ X/ I0ð Þtþ ~/0 sð Þ þ �1
2 ~/1 sð Þ þ O �ð Þ; (15b)

h ¼ Xh I0ð Þtþ ~h0 sð Þ þ �1
2~h1 sð Þ þ O �ð Þ; (15c)

where rnm~lðI0Þ ¼ nX/ðI0Þ þ mXhðI0Þ �~l � r. At lowest

order, it can be seen that fluid elements rapidly sweep around

the unperturbed torus with the angular speeds X/ and Xh,

and slowly execute displacements �1=2 ~dI0ðsÞ; ~/0ðsÞ, and
~h0ðsÞ relative to the unperturbed motion. An observer mov-

ing in a frame of reference following the unperturbed motion

will observe fluid elements moving along the level surfaces

of the function G. Since G does not depend explicitly on s,

the surfaces remain fixed in the moving frame.

We have also included in (15) the non-resonant contri-

butions to the solutions to (10) which, in the case of (10b)

and (10c), are just undetermined functions ~/1ðsÞ and ~h1ðsÞ
of the slow variable. The nonresonant solution to (10a) is the

sum of a slowly varying function ~dI1ðsÞ and a set of rapidly-

varying oscillations. All of these terms are of higher order

and will largely be disregarded in subsequent discussion,

which focuses on the level surfaces of G and their interpreta-

tion as barriers. However, it is important to note that the

functions ~dI1ðsÞ; ~/1ðsÞ, and ~h1ðsÞ are required to address

the stability of the barriers and the presence of chaos, a point

that will be revisited in the concluding remarks.

D. Remarks on the number of possible resonant terms

It is obvious that if one resonant triplet ðn;m;~lÞ satisfies

the resonance condition (5) for a given torus I0 and forcing

frequencies ~r, then all harmonics of this triplet, namely,

kðn;m;~lÞ where k is integer, are also resonant. So, in general,

the sum in Eq. (14) contains an infinite number of resonant

triplets. Note, however, that for the simplest case of a har-

monic forcing with sinðrtÞ–time dependence [as in our nu-

merical examples with the phenomenological model (1)], the

only non-zero F0
nml in the Fourier series (4) corresponds to

l¼ 1. Thus, even though summation in Eqs. (13) and (14)

still includes all possible triplets kfn;m; lg, only the F0
nm1-

term under the sum has non-zero amplitude.

Another question one could ask is: “How many “non-

harmonic” resonant terms can exist for a given torus?” The

answer is different for resonant tori with periodic or non-

periodic trajectories. When resonances occur with periodic

trajectories of the background flow, the number of non-

harmonic resonant terms is unbounded, whereas for non-

periodic trajectories, the maximum number of non-harmonic

resonant terms is 2.

To show this, we consider a non-periodic resonant tra-

jectory of the background flow (with X/=Xh 6¼ M=N for any

integers M and N), assume that it has three resonant triplets,

and write down the resonance condition for the first two res-

onant triplets fn1;2;m1;2;~l1;2g and for the third triplet

n1X/ þ m1Xh �~l1 �~r ¼ 0; (16)

n2X/ þ m2Xh �~l2 �~r ¼ 0;

njX/ þ mjXh �~lj �~r ¼ 0:

We remind the reader that all forcing frequency components

ri can be assumed to be incommensurate, otherwise a reduc-

tion of the number of frequency components would be possi-

ble (for example, a function with r1 ¼ 2p=2 and r2 ¼ 2p=3

is simply periodic with frequency 2p=6). To simplify the

analysis, it is convenient at this point to introduce a new set

of frequencies r̂i ¼~li �~r, so the above system becomes

niX/ þ miXh � r̂i ¼ 0; i ¼ 1; 2; 3: (17)

Using the first two equations (i¼ 1, 2) of system (17), we

can express

Xh ¼
n1r̂2 � n2r̂1

m2n1 � m1n2

; (18)

X/ ¼
m2r̂1 � m1r̂2

m2n1 � m1n2

:

Note that since we are considering non-periodic trajectories,

all forcing frequencies r̂i , i¼ 1, 2, 3 need to be incommensu-

rate, otherwise it follows from the above equations (18) that

the ratio X/=Xh ¼ M=N with integers M and N, so the trajec-

tory is periodic. With (18), the third equation in (17) becomes

ðm2n3�m3n2Þr̂1þðm3n1�m1n3Þr̂2þðm1n2�m2n1Þr̂3 ¼ 0:

(19)

Since ni, mi, and li (i¼ 1, 2, 3) are integers, and all forcing

frequencies r̂i (i¼ 1, 2, 3) are incommensurate, the above

equation can only be satisfied if the coefficients in front of

each r̂i are zero, requiring that

ðm1n2 � m2n1Þ ¼ 0: (20)

However, if ðm1n2 � n2m1Þ ¼ 0, then from (17) it follows

that r̂1 and r̂2 are commensurable, X/=Xh ¼ M=N, and the

trajectory in question is periodic, which violates our basic

assumption. Hence, no more than 2 non-harmonic resonant

terms can exist for any non-periodic trajectories.

Thus, when resonances occur with non-periodic trajecto-

ries of the background flow, the right-hand sides of Eqs. (13)

and (14) can have at most two non-harmonic triplets, with at

most two corresponding gnm~l’s that are not integer multiples

of each other. For periodic trajectories, on the other hand,

the existence of one resonant triplet ðn;m;~lÞ implies the exis-

tence of infinitely many non-harmonic triplets plus all their

higher-order harmonics.

In the following, we will refer to the case with 1 non-

harmonic resonant triplet as the single-resonance, and to the

case with	 2 non-harmonic triplets as the double-resonance.

Using this terminology, resonances occurring with the

periodic trajectories of the background flow are always of
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the double-type. Resonances occurring with the non-periodic

trajectories of the background flow are always of the single-

type when the perturbation is periodic (only one forcing

frequency ri in Eq. (4)), but could be either single- or

double-type when the perturbation is quasi-periodic (	 2

ri’s in Eq. (4)).

These observations also follow naturally from the intui-

tive plane wave description introduced in Subsection III A,

where resonances result from the phase locking between the

plane wave representing the disturbance and the motion of

the fluid parcel. For a double-resonance, the trajectory is

simultaneously phase locked with at least two plane waves

ðm1; n1; l1Þ and ðm2; n2; l2Þ, whose phase lines are aligned in

different directions (Figure 2(b)). The particle must move so

as to maintain constant phase with respect to both disturban-

ces, so the intersection point between the two phase lines

must coincide with the parcel trajectory. If the disturbance is

periodic, the intersection point must eventually return to its

initial location. The trajectory, which follows the intersec-

tion, must also return to its initial location and must therefore

be periodic. Thus, only tori with periodic trajectories are

subject to double resonance with respect to a single forcing

frequency. On the other hand, when the forcing is quasiperi-

odic, and due to two incommensurate frequenciesis, the

intersection point does not recur periodically and the corre-

sponding resonant particle trajectory is aperiodic. Thus, qua-

siperiodic time dependence allows tori with non-periodic

orbits to become double-resonant.

Finally, it is useful to think about the linear independ-

ence of the gnm~l’s in (14). Suppose that we find one resonant

triplet ðn1;m1;~l1Þ. We know that all of its harmonics,

2ðn1;m1;~l1Þ; 3ðn1;m1;~l1Þ etc., are also resonant, but the

corresponding arguments, ~g2n1;2m1;2~l1
; ~g3n1;3m1;3~l1

, etc., can be

expressed as an integer multiples of ~gn1m1
~l1

plus a constant.

Using the plane-wave description, all of these disturbances

propagate in the same direction and with the same normal

phase speed. If there are no other resonant disturbances (as

for the single-resonance case), then the solutions of (12) and

(13) live in the two-dimensional space of ~gn1m1
~l1

and ~dI0. On

the other hand, if the resonance is of the double type, then

there is a second resonance disturbance ~gn2m2
~l2

that is not a

harmonic of the first disturbance. All of its harmonics are

also resonant, but again, each can be written in terms of

~gn2m2
~l2

. In this case, solutions of (12) and (13) live in the

three-dimensional space of ~gn1m1
~l1
; ~gn2m2

~l2
, and ~dI. Now sup-

pose that we find a third resonant disturbance ~gn3m3
~l3

that is

not a harmonic of ~gn1m1
~l1

and ~gn2m2
~l2

(i.e., we have a double-

resonance with a periodic trajectory). In this case, we have

already shown in Subsection III C that the third disturbance

can be expressed through a linear combination of the first

two plus a constant, ~gn3m3
~l3
¼ A~gn1m1

~l1
þ B~gn2m2

~l2
þ C with

constant A, B, and C, so the phase space of (12) and (13) is

still three-dimensional, even when there are three or more

non-harmonic resonant triplets. This is intuitively clear as all

phases ~gnm~l are functions of ~/0 and ~h0 following a resonant

trajectory, and so at most two of them could be linearly inde-

pendent. Graphically, ~gn3m3
~l3

represents a plane wave that is

not aligned with the other two. The resonance occurs when a

fluid parcel follows a triple intersection point of the three

phase lines with different orientations, corresponding to

three disturbances. Here, it may be helpful to visualize the

situation in a translating frame of reference in which the fluid

parcel is stationary, so that the intersection point also becomes

stationary. The plane-wave forms of the disturbances imply

that their phase lines maintain fixed angles with respect to each

other, and cannot rotate, so they must also appear as fixed lines

in the translating frame. Then clearly, the vector cn3m3
~l3

corre-

sponding to the third wave can always be uniquely expressed

in terms of its projections onto the first two vectors, cn1m1
~l1

and

cn2m2
~l2

. Thus, the third wave at any location is completely

specified by the first two waves at that location.

Multi-scale analysis of resonances presented in

Subsection III C of this paper apply to both periodic and

quasi-periodic forcing (i.e., 1 or more forcing frequencies

ri), both single- and double-resonances (i.e., 1 or more non-

harmionic resonant triplets), and both non-degenerate and

degenerate resonances (degenerate cases are described in the

Appendix). Our results for the periodic forcing agree with

Dullin and Meiss (2012), but the cases with quasi-periodic

forcing and the case of a degenerate double-resonance are

not considered in that paper.

IV. GEOMETRY OF THE FLOW NEAR RESONANCES
AND RESONANCE WIDTH

We now focus on geometry of the invariant structures

that arise within the resonant layer. In Sec. III, we found an

integral of motion [see (14)] for the case, in which the first

derivative of nX/ðIÞ þ mXhðIÞ with respect to action at the

resonant torus I¼ I0 is nonzero. Cases of degeneracy, for

which the first j� 1 derivatives are zero, are treated in the

Appendix, and result in a generalized integral in motion [see

(A10)]. We now consider this generalized function G in the

un-scaled variables dI (which to leading order is �
1

jþ1 ~dI) and

gnm~l (which to the leading order is ~gnm~l )

G ¼ dIjþ1

jþ 1ð Þ!þ �
Xresonant

n;m;~l

F0
nml I0ð Þcos gnm~lð Þ

dj nX/ þ mXhð Þ
dIj

jI0

: (21)

To a first approximation, fluid trajectories in the vicinity of a

resonant torus are confined to the level surfaces of G. In

the primitive time coordinate, with s replaced by �
j

jþ1t, the

trajectories are given by /ðtÞ ¼ X/ðI0Þtþ ~/0ð�
j

jþ1tÞ; hðtÞ ¼
XhðI0Þt þ~h0ð�

j
jþ1tÞ, and

_dI ¼ �
Xresonant

nm~l

F0

nm~l
ðI0Þ sinðgnm~lÞ; (22a)

_gnm~l ¼
dj nX/ þ mXhð Þ

dIj

���
I0

dIð Þj

j!
; (22b)

with gnm~l ¼ n~/0ð�
j

jþ1tÞ þ m~h0ð�
j

jþ1tÞ þ anm~l .

Evaluating G for a given flow is numerically challenging

because it requires finding explicit expressions for the

action-angle-angle variables ðI; h;/Þ in terms of (x, y, z),

finding the resonant torus I0 along with the resonant sets

ðn;m;~lÞ, Fourier expanding the perturbation to compute
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F0

nm~l
ðI0Þ’s, and estimating the derivative terms in the denom-

inator of (21). However, the qualitative geometry of the G-

contours is not sensitive to the exact values of the coeffi-

cients, but is different for even and odd j and depends on the

number of resonant terms gnm~l in the right hand side of (21).

For a resonance with 2 g’s, the cases with both even and odd

j are illustrated in Fig. 3 using
djðn1X/þm1XhÞ

dIj ¼ djðn2X/þm2XhÞ
dIj

¼ 1, �¼ 0.1, Fn1m1l1 ¼ Fn2m2l2 ¼ 1, and all other F’s¼ 0.

For both even and odd j, far from the resonant

torus (i.e., large dI), G-contours flatten out and approach

dI � const (black surfaces in Fig. 3), suggesting that the

corresponding unperturbed tori are only slightly distorted by

the forcing. On the other hand, for small dI, trajectories are

strongly affected by the resonance and undergo a major

distortion (green and red surfaces in Fig. 3). Thus, the phase

portrait of G can be split in two distinct regions—trajectories

trapped inside the resonance, where dIðtÞ crosses zero

following a trajectory due to the sin -terms in the right-hand-

side of Eq. (22a), and trajectories exterior to the resonance

for which dIðtÞ does not cross zero. This is equivalent to

defining the resonance as the region where at least one

g-variable wraps around following a trajectory, whereas out-

side of the resonance, all g’s increase monotonically. In prin-

ciple, the resonant region could be further divided into

subdomains where either all g’s wrap around or some g’s

wrap around and some increase monotonically, but here we

are interested in defining the outer boundary of the resonant

region rather than its sub-boundaries.

The interior and exterior of the resonant region are

separated by a contour Gsep—the last G-contour that crosses

dI ¼ 0 (blue surface in Fig. 3). The upper bound on Gsep can

be found by setting all cosines equal to 1 in (21):

Gsep ¼ �
Xresonant

n;m;~l

jF0
nml I0ð Þj��� dj nX/þmXhð Þ
dIj

���
I0

: (23)

Note that this upper bound might not be reached for resonan-

ces that involve at least one linearly-dependent g-term. The

maximum excursion in dI of this Gsep-contour can be used to

define the upper bound on the width of the resonant region

DI ¼ 2 � jþ 1ð Þ!
Xresonant

n;m;~l

jF0
nml I0ð Þj��� dj nX/ þ mXhð Þ
dIj

���
I0

0
B@

1
CA

1= jþ1ð Þ

: (24)

The resonance width expression (24) is a generalization

of formula (3.13) from Pratt et al. (2014) and reduces to their

(3.13) for a single-resonance case with a steady disturbance.

Again, the computation of a resonance width for a particular

flow is numerically challenging because it requires Fourier-

expanding the perturbation in terms of action-angle-angle

variables. However, trends such as the �-dependence and the

dependence on the derivative term in the denominator of

(24) have been tested against numerical simulations in a

steady rotating can flow in Pratt et al. (2014), and good

agreement was found. Note also that the n and m in denomi-

nator of (24) tend to create larger widths for low-order

resonances (with small n and m). If the forcing produces a

disturbance with broad spatial scales, then F0

nm~l
are also larg-

est for small n and m, and a combination of large numerator

and small denominator results in wide resonant layers for

low-order resonances. On the other hand, if the forcing has

fine spatial structure, then F0

nm~l
may be small for small n and

m, and the situation is less clear.

In the simplest special case of a single-resonance excited

by a harmonic forcing (i.e., the case with exactly 1 resonant

triplet nml), system (22) becomes Hamiltonian

_dI ¼ �@G=@g;

_g ¼ @G=@ðdIÞ;
(25)

with

G ¼ �F0
nml I0ð Þcos gð Þ þ

dIð Þjþ1

jþ 1ð Þ!
dj nX/ þ mXhð Þ

dIj

���
I0

(26)

playing the role of the Hamiltonian. The corresponding

phase space geometry of system (26) is shown in Fig. 4 for

odd and even j (again, using � ¼ 0:1; F0
nmlðI0Þ ¼ 1

and
dj nX/þmXhð Þ

dIj
jI0
¼ 1). For the simplest case of a non-

degenerate single-resonance with j¼ 1, we recover the

FIG. 3. In the case of a double-resonance, phase portrait of G for (left) odd and (right) even j.
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pendulum approximation geometry commonly observed in

perturbed Hamiltonian systems.

The inclusion of harmonic and linearly-dependent terms

in Eq. (21) leads to “modulation” of the G-surfaces, and an

example with three harmonic terms, gn1m1l1 ; gn2m2l2

¼ 2gn1m1l1 þ a2, and gn3m3l3 ¼ 3gn1m1l1 þ a3, is shown in

Fig. 4 (bottom) for j¼ 1, a2 ¼ 2:1; a3 ¼ 2:7; � ¼ 0:1;

F0
nimili
ðI0Þ ¼ 1, and

d niX/þmiXhð Þ
dI jI0

¼ 1 for i¼ 1, 2, 3. The

phase space can still be split into the resonant region where

G-contours cross dI¼ 0 and the region outside of the reso-

nance where G-contours do not cross zero. However, within

the resonant region, additional elliptic and hyperbolic points

arise leading to a more complicated geometry than for a

simple pendulum approximation. As discussed above, the

contribution of the higher-order terms tends to decrease with

increasing order for disturbances with broad spatia l scales,

so the modulation of the G-surfaces by higher-order har-

monic terms is expected to be less pronounced than in Fig. 4

(bottom).

A. Geometry of the flow near resonances in the real
physical space (x, y, z)

The level surfaces of G are material surfaces that sweep

around the undisturbed resonant torus. Physical visualization

of these surfaces, and the trajectories that follow them, is chal-

lenging due to the practical difficulty of computing the trans-

formations from ðdI; gn1m1
~l1
; gn2m2

~l2
Þ to ðdI;/; hÞ to (x, y, z).

For most realistic flow fields, the second transformation is

fiendishly difficult. However, since we are only interested in a

qualitative geometry of the flow near resonances, progress can

be made by assuming that all unperturbed tori are horizontal

with circular cross-sections, and that / and h are the simple

toroidal angles related to x, y, z by

x ¼ ðRþ r cos /Þ cos h; (27)

y ¼ ðRþ r cos /Þ sin h;

z ¼ r sin /;

where r ¼ r0 þ dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o þ dI=p
p

is the difference in radius

from the reference torus, r0 is the radius of the vertical cross-

section of the reference torus, and R is the distance from the

center of the reference torus to the vertical axis of symmetry.

The last expression follows from the fact that we define

action I as an area of a vertical cross-section of a torus, so dI
is the difference in area from the reference torus.

The geometry of the flow near different single-

resonances in ðgn1m1l1 ; gn2m2l2 ; dIÞ�; ðh;/; dIÞ�, and (x, y, z)–

spaces is illustrated in Fig. 5 for ðn;m; lÞ ¼ ð0; 1; 1Þ (first

row), (2, 0, 1) (second row), and (1, 1, 1) (third row). In all

subplots, the outer blue G-surface represents a separatrix

bounding the resonant region, with all outer surfaces (not

shown) being topologically equivalent to the unperturbed

tori. Inside the blue surface lie the red and green surfaces.

The green surface lies close to the dI ¼ 0 contour, which in

(x, y, z) corresponds to an invariant closed curve located at

the very center of the resonant region. The red surface lies

between the green and the blue. The (0, 1, 1)-case that is

shown in the upper panels corresponds to the 1:1-resonance

between the forcing frequency and Xh, so h is a resonant

coordinate and / is a non-resonant coordinate. Thus, the red

and green surfaces in the top right panel, as well as all other

G-contours lying inside the blue separatrix, occupy a limited

range in h, but extend all the way in / from 0 to 2p (see the

red surface for illustration). We will refer to this geometry as

the “folded torus” geometry as opposed to the usual

“unbroken tori.” If one plots G-surfaces lying just outside/

inside of the red one, the gap between the two edges of the

FIG. 4. Phase portrait of H for (top left) odd and (top right) even j. Phase portrait of G for j¼ 1 with 3 harmonic sin-terms.
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folded torus gets smaller/larger, respectively, shrinking to

zero as we approach the separatrix (blue) or extending to 2p
as we approach the closed invariant curve (green) at the

center of the resonant region. Similarly, for the (2, 0, 1)-

resonance in the second row panels, h is a non-resonant and

/ is a resonant coordinate, leading to all surfaces within the

blue separatrix being discontinuous in / with 2 gaps. Again,

both the top and bottom halves of the red surface in the right

middle panel have the altered “folded torus” geometry. As

before, for larger and larger G-surfaces containing the red

one, the gaps between the top and bottom parts get smaller

until the top and bottom touch each other at the separating

blue surface. For smaller and smaller surfaces contained

within the red object, the gaps get larger until eventually

we approach the green closed invariant curve. The (1, 1, 1)-

resonance in the 3 bottom panels is not very different from

the other two single-resonance cases. In the bottom right

panel, we again have the folded torus geometry, but instead

of having a vertical or horizontal gap in the folded torus as in

the top and middle panels, respectively, the gap now wraps

around the torus making one complete loop in both / and in

h before connecting back to itself. More generally, the gap

loops n times in / and m times in h before connecting to

itself.

G-surfaces for a double-resonance with two non-

harmonic resonant triplets, (1, 0, 1) and (0, 1, 1), are shown

in Fig. 6. Two qualitative differences between this figure and

the single-resonance in Fig. 5 are that: (1) some of the

G-surfaces have a torus-knot or pretzel-like geometry, and

(2) the surfaces are centered around fixed points in g-dI-
space (representing isolated periodic orbits in (x, y, z)) rather

than around closed invariant curves, so that G-surfaces lying

near the center of the resonant region have spherical rather

than toroidal geometry. In Cartesian (x, y, z)-coordinates

(left middle panel), the blue separatrix consists of the inner

and outer tori, where the inner torus just touches the outer

FIG. 5. Geometry of the G-surfaces in ðgnml; dI)-space (left), ðh;/; dIÞ-space (middle), and in the real physical (x, y, z)-space (right) for three different single-

resonances: (first row) ðn;m; lÞ ¼ ð0; 1; 1Þ, (second row) (2, 0, 1), and (third row) {1, 1, 1}. The three small panels show the blue, red, and green objects from

the right panel of the third row.
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one at one point at the very left of the left middle panel. This

is further illustrated in the left bottom panel by taking a slice

through the blue object at y¼ 0. The red surface lying just

within the blue has openings both in h and / in the

ðh;/; dIÞ–space (upper right panel), and thus has a hole

leading to the inside of the smaller torus in (x, y, z)-space. As

we look at tori lying inside the red surface in the

ðh;/; dIÞ–space (upper right panel), both gaps in h and /
shrink, until eventually the gap in h disappears. All smaller

surfaces will thus be qualitatively similar to the purple

object, which have a gap in / but not h. In (x, y, z)-coordi-

nates (right middle panel), the purple object is topologically

equivalent to the folded tori we saw in the single-resonance

cases. Finally, as we go to smaller and smaller surfaces

contained within the purple, the gap in / will eventually

close up in the ðh;/; dIÞ–space, and all smaller G-surfaces

will have spheroidal geometry similar to the green and black

objects.

B. Strong KAM stability

Resonance widths are important because overlapping

resonances lead to the destruction of all tori between them,

initiating the onset of widespread chaos (Chirikov, 1979;

Zaslavsky and Chirikov, 1972). The resonance condition (5)

is formulated in terms of frequencies, so the resonance over-

lap criterion is most easily defined in the frequency domain

as DX 	 X1 � X2, where X1;2 are the neighboring resonant

frequencies and DX is the width of a resonance in frequency

domain,

DX ¼ @
jX
@Ij

I0ð Þ
DIð Þj

j!
/ �j= jþ1ð Þ; (28)

with DI given by (14). The scaling DX / �j=ðjþ1Þ suggests

that resonance widths are generally smaller when j gets

larger. Thus, degenerate resonances with j> 1 generally

have smaller resonance widths than nondegenerate resonan-

ces with j¼ 1. So, degenerate resonances generally require

larger perturbation strength to overlap, leading to the greater

resistance to chaos near degenerate tori. This phenomenon is

referred to as the “Strong KAM Stability” near degenerate

tori. It is similar to the strong KAM stability in 2D flows

(Rypina et al., 2007b), which is responsible for the existence

of robust transport barriers near shearless trajectories at jet

cores in oceanic and atmospheric flows.

V. NUMERICAL EXAMPLES

In this section, we test the above results numerically by

constructing examples of resonances for the “rotating can”

flow described in Sec. II. We focus on most generic single-

resonance cases; double-resonances are less typical and

more challenging to produce numerically. We also restrict

our attention to the simplest periodic perturbation because it

allows us to use Poincar�e section techniques to visualize the

resonant objects. Quasi-periodic perturbation cases are not

FIG. 6. Geometry of the G-surfaces for a double-resonance with two independent resonant triplets, (1, 0, 1) and (0, 1, 1), in ðgnml; dI)-space (top left),

ðh;/; dIÞ-space (top right), and in the Cartesianl (x, y, z)-coordinates (middle panels). A slice at y¼ 0 through each object is shown in the bottom panels.
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well-suited to treatment by the Poincar�e sections and require

other methods of visualization. We will come back to this in

Sec. VI.

Visualizing 3D time-varying objects, such as oscillating

tori, could present a challenge. One way to overcome this

challenge is by sampling the object at the same phase, so the

oscillation is eliminated and the object appears steady. For

time-periodic systems, this is achieved by temporal Poincar�e
strobing, where samples are taken at integer multiples of the

forcing period T, i.e., at discrete times tr ¼ 0modð2pÞ. Once

a steady 3D object has been constructed via the above-

described temporal Poincar�e strobing, a vertical slice through

the object at h ¼ const can be made to reduce it to two

dimensions r and z (we use jhj ¼ p=2 or, equivalently,

y¼ 0). We will refer to the resulting 2D slice as the double

Poincar�e section. On the double Poincar�e section, periodic

trajectories will appear as stationary points, regular trajecto-

ries that live on oscillating tori will correspond to discretely

sampled closed curves, whereas chaotic trajectories will

appear as scattered dots that fill finite areas.

A. Resonances in the phenomenological model of the
rotating can flow

In order to use the resonance condition (5) to define the

forcing frequencies that will excite resonances in our phe-

nomenological model of the rotating can flow, we have

numerically estimated T/ and Th for trajectories of the

unperturbed axially symmetric background flow. As shown

in Fig. 7 (top right), Th spans the range from about 9 to 10.7

and T/ spans the range from about 8.7 to 15. A periodic tra-

jectory with period T/ ¼ Th � 10 exists, which corresponds

to a stationary point on the Poincar�e section of the unper-

turbed flow (Fig. 7 (top left)) and which gives rise, when a

steady symmetry-breaking disturbance is added (Eq. (1) with

c¼ 0), to one large island in Fig. 7 (bottom). At the center of

the island lies a steady elliptic point (corresponding to a peri-

odic trajectory in 3D), surrounded by a family of nested

closed curves (twisted tori in 3D). Some of the original tori

are deformed but remain unbroken, they are centered near

x¼�0.33 and z¼ 0.4 in the left-hand part of the section; we

will refer to this region as a “central region.” The region

near the cylinder axis (x¼ 0) and around the perimeter of the

can become chaotic and appears as a cloud of scattered

dots in Fig. 7 (bottom). Because the system is steady in both

Fig. 7 (top) and (bottom), no temporal Poincar�e strobing is

necessary and both Poincar�e sections simply correspond to

the vertical section at h¼ 0 through the cylinder.

We now test the system’s response to harmonic time-

periodic forcing for three different choices of the forcing

period: Tf¼ 1, 4.5, and 11.05. The first choice is “very

weakly resonant” in the sense that the corresponding forcing

frequency r ¼ 2p=Tf ¼ 2p is far from both X/ or Xh for all

trajectories in the background flow. Thus, according to (5),

no low-order resonances can be excited by this forcing, and

the corresponding double Poincar�e section for the unsteady

system in Fig. 8 (top) is topologically similar to the Poincar�e
section for the steady perturbed system (Fig. 7 (bottom)).

Both sections show nested unbroken tori in the central region

(one such torus is shown in Fig. 8 (top right) after temporal

Poincar�e sampling was done to eliminate its time-periodic

oscillation), an island, and a chaotic zone near the perimeter

of the cylinder.

The second forcing considered (Tf¼ 4.5) is resonant

with one of the nested tori lying in the central region. In the

background flow, this is the torus with trajectories whose T/

is twice the forcing period, i.e., r=X/ ¼ 2, so the corre-

sponding resonant triplet in (5) is n¼ 2, m¼ 0, and l¼ 1. No

other low-order resonances are excited by this forcing

FIG. 7. (top left) Poincar�e section for

the unperturbed flow. (top right)

Periods of trajectories in the unper-

turbed system. Trajectories were

released at initial positions xin¼ 0.333,

yin¼ 0, and different zin spanning the

range 0< zin< 0.6. (bottom) Poincar�e
section for the steady perturbed

system.
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frequency. The corresponding double Poincar�e section in

Fig. 8 (middle left) looks topologically similar to the steady

perturbed Poincar�e section in Fig. 7 (bottom) everywhere

except near the above-mentioned resonant torus. There is

still a chaotic zone near the cylinder perimeter, and one large

island produced from the break-down of the periodic trajec-

tory. However, the central region around x¼�0.33 and

z¼ 0.4 in the left-hand part of the section, which only con-

tained nested unbroken tori in Fig. 7 (bottom), now shows a

new resonant structure (shown in red) that appears as two

islands on the double Poincar�e section in Fig. 8 (middle left).

The corresponding 3D geometry (after temporal Poincar�e
sampling) of this resonant structure, shown in the right panel,

is qualitatively similar to Fig. 5 (right panel of the 2nd row).

Both the top and bottom halves of this object look like

“folded tori,” where the bottom (top) part of the torus was

folded inside its top (bottom) part. The object is continuous

in h because this is a non-resonant coordinate (i.e., m¼ 0)

but is discontinuous in / with two islands in each vertical

slice (because n¼ 2). The red torus is, of course, just one out

of the whole family of tori whose geometries have been

altered by the resonance. All of these tori are topologically

similar and are contained one within the other. The blue

torus, for example, lies just outside of the red, and its top and

bottom halves come closer together. If we continue to plot

other tori that contain the red and the blue tori, eventually

for one of those, the top and bottom halves will extend all

the way in / and touch each other, forming a separatrix.

Close to the separatrix, the flow is chaotic. Far from the reso-

nance, outside of the separatrix, tori are only very weakly

affected by the resonance and survive the perturbation. If we

go in the other direction and plot smaller and smaller tori

FIG. 8. For the periodically-perturbed phenomenological model of the rotating cylinder, the Double Poincar�e section (left) and the corresponding 3D geometry

(right) for the three choices of forcing frequency: (top) Tf¼ 1, (middle) Tf¼ 4.5, and (bottom) Tf¼ 11.05.
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that are contained within the red one, the top and bottom

halves will get further and further from each other until

eventually we hit the limiting trajectory that lives at the very

core of the whole family of the top and bottom halves. This

limiting trajectory corresponds to two closed curves on the

3D temporal Poincar�e section in Fig. 8 (middle right) (i.e.,

after stroboscopic sampling at the forcing period). Each of

these two closed curves intersects twice with the vertical

y¼ 0-plane (once at x< 0 and once at x> 0), giving a pair of

period-2 elliptic points lying at the centers of the red islands

in Fig. 8 (middle/left). The green object in Fig. 8 (middle

right) is an example of a torus that lies very close to that lim-

iting trajectory.

The third choice of the forcing, Tf¼ 11.05, is also reso-

nant and excites the lowest-order resonance with one of the

nested tori in the central region. In the background flow, tra-

jectories that foliate this torus have Th¼Tf or, equivalently,

r/Xh¼ 1. The corresponding resonant triplet in Eq. (5) is

therefore n¼ 0, m¼ 1, and l¼ 1, and the corresponding reso-

nant geometry is equivalent to Fig. 5 (right panel of the 1st

row). As before, no other low-order resonances are excited

by this forcing. Similar to the case with T¼ 4.5, the double

Poincar�e section for T¼ 11.05 in Fig. 8 (lower left) looks

qualitatively similar to the steady perturbed Poincar�e section

in Fig. 7 (bottom) everywhere except near the resonant torus.

There, a resonant structure is now present, which looks like

two concentric red circles (both circles are produced by the

double Poincar�e strobing of the same trajectory) in the left

part of the section (x< 0) with no signature at x> 0. As

shown in the right bottom panel of Fig. 8, this resonant

object is continuous in / because this is a non-resonant coor-

dinate (i.e., n¼ 0) but discontinuous in h with 1 gap (since

m¼ 1). This is topologically equivalent to Fig. 5 (right panel

of the 1st row). Again, we can find the whole family of tori

whose geometies are qualitatively similar to that of the red

object. As we look for tori that contain the red object, even-

tually, we will hit the separatrix (blue object is very close to

the separatrix) that extends all the way in h and touches

itself. Outside of this separatrix, tori are only weakly affected

by the resonance, so they are slightly distorted but still main-

tain the usual unbroken torus geometry. As we look at tori

such as the green one that are contained within the red, the

objects shrink in h-direction until eventually we hit the

invariant closed curve at the very core of the nested family

of objects.

Finally, it is important to note that the resonant flow

geometries described above are quite robust with respect to

the small changes in the forcing frequency. Because the peri-

ods of trajectories vary smoothly from one unperturbed torus

of the background flow to the next, changing the forcing fre-

quency will simply lead to a slight shift in the center position

of the resonance towards the neighboring outer or inner torus

but will not alter the qualitative geometry of that resonance.

B. Resonances in the full numerical solution for the
rotating can flow

With the above geometries as a guidance, we now

proceed to produce an example of a resonance using the full

numerical solution of the Navier-Stokes equations. We used

the Nek5000 model described in Sec. II, which was config-

ured with 640 elements within the cylindrical domain with

Legendre polynomials of order N¼ 11, resulting in 1105920

mesh points. The dimensionless time step was 10�4, and the

tolerance for flow divergence was 10�9. The time depend-

ence became very nearly periodic after about 10 forcing peri-

ods, or about 4000 cpu hours, at which time the velocity

fields over one forcing period were saved and used offline

with bi-linear spatial and temporal interpolation for particle

advection. As double stroboscopic sections require long

trajectory integrations, the results are potentially sensitive to

roundoff errors and to small violations of volume preserva-

tion (Speetjens and Clercx, 2005). The results for one case

were compared with on-line trajectory calculation from a

high resolution (N¼ 21, 6814720 mesh points) run to verify

numerical convergence, and good agreement was found.

The steady axially-symmetric background and the corre-

sponding periods of trajectories in the unperturbed system

are shown in Fig. 9 (top). Here, Th varies from about 16 to

22, and T/ from about 13 to over 100. Several low-order

periodic trajectories are apparent in the top right panel of 9:

A periodic trajectory with T/ ¼ Th � 16:2 is closest to the

mid-depth of the can (near zin ¼ 0:39), another periodic tra-

jectory with 2Th ¼ T/ � 36 exists (but is not shown in the

top left panel) a little further from mid-depth near zin¼ 0.13,

and other periodic trajectories with T/=Th ¼ M=N with large

integer M and N lie closer to the perimeter of the cylinder.

The middle panel of Fig. 8 shows the Poincar�e section for

the steady perturbation, where the lid of the cylinder has

been shifted slightly off-center. Under the influence of this

steady disturbance, each of the periodic trajectories breaks

down producing chains of islands, with the largest and most

prominent island corresponding to the break up of the

periodic trajectory with T/ ¼ Th � 16:2. Qualitatively, this

Poincar�e section is similar to that for the phenomenological

model, with the nested unbroken tori in the central region

(which is now centered around x ¼ 60:6 and z¼ 0.65), one

large island outside of this region, and chaotic zone near the

perimeter of the cylinder.

We now start to force the system by moving the lid peri-

odically with period Tf ¼ 16:35 in x-direction around its

shifted position. This forcing period is equal to Th for trajec-

tories lying on a torus located roughly halfway between the

periodic trajectory at z¼ 0.65 and the perimeter of the can,

just outside of the torus with periodic trajectories. The corre-

sponding resonant triplet in Eq. (5) is n¼ 0, m¼ 1, and l¼ 1,

and the expected resonance geometry should be topologi-

cally equivalent to that shown in Figs. 5 (right panel of the

1st row) and 8 (bottom) (see also small inset in the right

bottom panel of Fig. 9). Consistent with this expectation, on

the corresponding double Poincar�e section (Fig. 9 (bottom

left)), the resonance (shown with large black dots) appears in

the form of two concentric circles on the left half-plane

(x< 0) with no counterpart in the right half-plane. The black

object is, of course, not the only one affected by the

resonance. For example, a torus just next to it (shown using

purple stars) has a similar geometry, but—unlike the black

object—extends further in h and appears as two concentric
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circles on one side of the double Poincar�e section and as two

separate islands on the other side. The 3D structure of both

the black and purple objects is illustrated in the bottom right

panel of Fig. 9. Both objects look noisier than their counter-

parts from the bottom right panel of Fig. 8 that were con-

structed using the analytically-prescribed phenomenological

model. This is likely because the calculation of the double

Poincar�e section and the corresponding 3D geometries of the

resonant objects require long trajectory integration of about

2000Tf , which presents significant numerical challenges and

unavoidably leads to some numerical noise due to interpola-

tion errors. Spectral-solver (Speetjens and Clercx, 2005) or

FIG. 9. For the full numerical solution of the flow in the rotating cylinder, the Poincar�e section for the background axially-symmetric flow (top left), the corre-

sponding trajectory periods (top right), the Poincar�e section for the steady symmetry-breaking perturbation (middle), and the double Poincar�e section for the

time-periodic resonant disturbance of the upper lid (bottom). Small inset on the bottom right shows the expected resonance geometry in 3D inferred from the

phenomenological model.
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volume-preserving integration schemes might help mitigat-

ing this problem and reduce numerical noise. Apart from

this noise, however, the black and purple objects in Fig. 9

(bottom left) are topologically equivalent to the expected res-

onance geometry predicted by the theoretical arguments and

numerical simulations in the phenomenological model. Note

that we only expect topological similarity between the

objects in Figs. 8 and 9 since they correspond to the same

resonance type, but not exact equality between them because

they belong to different flows. Note also that the velocities in

the Navier-Stokes simulations, though time periodic, might

not be exactly sinusoidal in time, as they were in the

phenomenological model. Thus, harmonic terms with finer

temporal scales may be present at low amplitude, thereby

rendering invariant surfaces more difficult to resolve. It is

possible that this has contributed to the less distinct character

of the surfaces computed.

C. Resonances and tracers

From the physical oceanographic point of view, the dou-

ble Poincar�e sections are of limited use in the field or in the

lab because real oceanic flows rarely remain intact over long

time scales required to construct them. A more relevant

question would be whether resonances have strong effect on

the redistribution of tracers and other measurable physical

quantities over time scales of several tens (rather than thou-

sands) of forcing periods. To investigate this question, we

numerically simulated, using the NEK5000 model, a release

of a small compact blob of tracer in the rotating can flow

with the resonant (Tf ¼ 16:35) and non-resonant (Tf ¼ 14:5)

forcing, and looked at its subsequent evolution over 22 forc-

ing periods. Initially, the tracer was confined to a small ellip-

soid lying entirely in the interior of the black folded torus

(one of those whose geometry was altered by the resonant

forcing) shown in the bottom panels of Fig. 8. For a flow

with the resonant forcing, and in the absence of any diffu-

sion, this structure would represent a perfect impenetrable

material barrier. When a small amount of diffusion is pres-

ent, as in our numerical tracer release experiment (Peclet

number Pe ¼ 105 or, equivalently, dimensionless diffusivity

j ¼ 10�5), the tracer will slowly “diffuse” across that

surface. However, because the diffusion process is slow,

over relatively short time scales of several tens of forcing

periods, the tracer has to remain mainly on the interior side

of this boundary. Since the forcing is periodic, the boundary

oscillates in time and is repeated after each forcing period.

Hence, by taking snapshots of the tracer field at multiple

integers of the forcing period, i.e., at t ¼ Tf ; 2Tf ;…; 22Tf ,

and then averaging together these snapshots, we can approxi-

mately reconstruct the geometry of the boundary (see also

Mezic and Sotiropoulos (2002) for a rigorous discussion of

this method).

The most striking geometric feature of the black folded

torus is that, unlike unbroken tori of the background flow, it

does not extend all the way around the can in h and conse-

quently does not intersect the vertical x-z plane at x> 0 (see

left bottom panel of Fig. 8). The tracer, which is mostly con-

fined within the black folded torus for the flow with resonant

forcing and small diffusivity, also should have no (or very

little) signature on the right side (i.e., at x> 0) of the x-z

plane. Consistent with this picture, for the resonant forcing

case shown in the left panel of Fig. 10, the bulk of the tracer

concentration is observed on the left side of the x-z plane at

x< 0, with much smaller tracer concentrations on the right

side at x> 0. The little amount of tracer seen at x> 0

has leaked there by the slow diffusion process. To produce

Fig. 10, we have renormalized each of the 22 tracer concen-

tration snapshots to have values between 0 and 1 before aver-

aging together all snapshots. Without such renormalization,

snapshots taken at earlier times (i.e., when tracer has not dis-

persed much yet) have much higher tracer concentrations

and thus dominate the averaged field. Renormalization evens

out the contributions from different snapshots leading to a

more representative picture of the areas occupied by and

devoid of the tracer. Note that the renormalization does not

in any way facilitate the “leakage” of the dye from the inside

to the outside of the barrier, and thus does not corrupt the

invariant structures.

In contrast to the resonant forcing case in Fig. 10(a),

for the non-resonant forcing case shown in Fig. 10(b), the

resonant island is completely absent and the tracer is not

constrained to stay within the black folded torus. Instead, the

tracer is free to spread azimuthally around the can all the

way in h, intersecting the vertical x-z plain both at x< 0 and

x> 0. Thus, the corresponding averaged tracer concentration

field in Fig. 10(b) shows comparable values on the left and

right sides of the x-z plane.

FIG. 10. Renormalized averaged tracer concentration in the x-z plane for the rotating cylinder flow with (a) resonant (Tf¼ 16.35) and (b) nonresonant

(Tf¼ 14.5) forcing.
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The numerical simulation just described illustrates the

importance of resonances and suggests that small O(10%)

change in the forcing period can lead to major qualitative

changes in the resulting tracer distribution. Due to its

simplicity, tracer experiments of this type can potentially

provide a technique for studying resonance phenomena in

the lab and in the field.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we used a combination of weakly-

nonlinear analysis and numerical simulations to clarify some

important aspects of resonant chaotic stirring in certain

classes of 3D time-dependent fluid flows with symmetries.

Our analysis lead naturally to the resonance condition (5)

predicting that resonances occur when the forcing frequency

is commensurable with the frequencies of trajectories in the

unperturbed flow. The flow in the vicinity of such resonant

trajectories can be studied using multi-scale analysis leading

to a simplified system (22). An important property of (22) is

that it has an integral of motion G given by (21), so the

behavior of trajectories can be understood by mapping out

contour levels of G. Based on the relationship between the

forcing frequency and frequencies of trajectories, resonances

have been classified into single-resonances and double-

resonances. Resonant geometries have been mapped out for

a variety of single- and double-resonances, and general

trends have been identified and discussed. The theoretically

predicted geometries were compared to numerical simula-

tions in both phenomenological model and in a full numeri-

cal solution of the Navier-Stokes equations for a rotating can

flow, and a good agreement was found. Also, the expression

describing the width of the resonant region—an important

parameter for the set-up of global chaos—has been derived,

and the physical interpretation of the resonances in terms of

plain waves has been discussed.

Because frequencies of trajectories in the unperturbed

system generally span a range of values, many resonances

are excited by a given forcing frequency. Unless the forcing

varies on a very fine spatial scale, the lowest-order resonan-

ces are generally the strongest. Higher-order resonances are

usually confined to more narrow areas, and their impact on

the overall flow geometry and properties is much weaker.

When the forcing is time-harmonic with simple sin rt–time

dependence, such as in our numerical examples, only reso-

nant triplets with l¼ 1 are allowed in the resonance condition

(5). However, for a more general time-dependence, each res-

onant triplet {n, m, l} also has higher-order harmonics,

k 
 fn;m; lg, which are usually less important than the main

harmonic but whose influence cannot be completely ignored.

Single-resonances are very common because even the

simplest time-harmonic single-frequency forcing is expected

to excite multiple single-resonances with various trajectories.

Double-resonances, on the other hand, are less typical and,

for a time-periodic forcing, can only occur with periodic

trajectories of the background flow. Quasi-periodic forcing

can excite double-resonances with non-periodic trajectories,

but only for very carefully chosen forcing frequencies (for

example, when r1 is commensurable with X/ and r2 with Xh

for the same trajectory).

It is natural to ask why the multiple scale expansion does

not capture any of the chaotic behavior that arises in the

model examples around and within resonant layers. Note that

since the lowest order terms in (15) exhibit regular behavior,

chaos would have to arise in the undetermined higher order

corrections ~/1ðsÞ; ~h1ðsÞ and ~dI1ðsÞ. However, since
~dI1ðsÞ; /, and h for a chaotic trajectory will depart by a large

amount from their lowest order values dI0; /0, and h0 for the

G-conserving approximation, ~dI1ðsÞ; ~/1ðsÞ; ~h1ðsÞ would

eventually grow to Oð��1=ðjþ1ÞÞ, and the asymptotic approxi-

mation would be invalidated. One could certainly test for

unbounded growth by computing ~dI1ðsÞ; ~/1ðsÞ; ~h1ðsÞ
through a consideration of higher order balances, which is not

carried out here. This analysis, which addresses the stability

of the G-conserving orbits, would at least identify the stable

ones.

The restriction to time periodic flow is, of course, an

idealization for ocean applications. Quasiperiodic and aperi-

odic time dependence raises significant conceptual, computa-

tional, and even visual challenges. Recent advances that

attempt to confront these difficulties are based on measures

of coherence, ergodicity, complexity, hyperbolicity, and

other properties that potentially distinguish an “invariant”

surface or barrier in a 3D flow with general time dependence.

Specific approaches include variational methods for

Lagrangian coherent structures (Beron-Vera et al., 2013),

transfer operators (Froyland et al., 2007), ergodic quotient

partitions (Budisic and Mezic, 2012), trajectory complexity

measures (Rypina et al., 2011), and Lagrangian descriptors

(Mendoza et al., 2014). It is not known how accurately or

efficiently any of these methods would be able to reproduce

the objects shown, say, in Fig. 8. Nor is it known whether

any of the methods could capture the objects approximated

in Fig. 9 with more clarity or economy. There are some

promising results, for example, Budisic and Mezic (2012)

are able to compute invariant surfaces and chaotic seas for

the ABC flow, for which the velocity field is three-

dimensional but steady, and for the periodically-forced

three-dimensional Hill’s vortex flow. Blazevski and Haller

(personal communication) were able to compute one of the

time-periodic invariant surfaces from our kinematic model

using the Beron-Vera et al. (2013) method. Targeted tracer

release experiments (both numerical and real) similar to

what has been described in Sec. V C also present a useful

tool for identifying invariant surfaces in time-dependent

flows. A comparison between all of the methods would be

valuable, and the results from our kinematic model provide a

standard.

Visualization of time-varying boundaries is important,

not only for intuition building but also for experimental

tracer releases, which may be the only viable technique for

observing such structures in the ocean and demonstrating

that they can withstand the diffusive effects of background

turbulence. Without a three-dimensional visualization, it can

be difficult to form a mental picture of many of the colored

surfaces shown in the lower panels of Fig. 5. It is unlikely

that these will become any simpler if the time dependence
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becomes aperiodic. This is perhaps an opportunity for collab-

orations between artists and scientists (e.g., Osinga and

Krauskopf (2004)).

Although azimuthal swirling and vertical overturning

arising in the rotating can flow are essential elements of

many observed oceanic eddies, our model is highly idealized

and thus only represents a first step towards establishing the

utility of the dynamical systems approach to real oceanic

flows. In addition to non-periodic forcing, future work could

consider the effects of stratification, as well as fluid

exchange between the eddy interior and the surrounding fluid

through, for example, relaxing the limitation the limitation

that the flow is contained within rigid vertical walls.
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APPENDIX A: MULTI-SCALE ANALYSIS OF
DEGENERATE RESONANCES

We are interested in investigating the behavior of trajec-

tories close to a degenerate resonant torus I0 satisfying

nX/ðI0ÞþnXhðI0Þ�~l �~r¼0;
djðnX/þmXhÞ

dIj

��� I0
6¼0;

diðnX/þmXhÞ
dIi

��� I0

¼0 for i< j. Scaling arguments described in Sec. III B

suggest that dI will grow to Oð�1=ðjþ1ÞÞ over t�Oð��j=ðjþ1ÞÞ.
We therefore define the generalyzed slow time variable s¼
�j=ðjþ1Þt and treat t and s as two independent variables leading

to d=dt¼@=@tþ�j=ðjþ1Þ@=@s. The previously considered

non-degenerate case is represented by j¼1.

It is convenient to introduce a phase variable

gnm~l ¼ n/þ mh�~l �~rtþ anm~l , whose evolution, according

to (3), is governed by

dg
dt
¼ nX/ Ið Þ þ mXh Ið Þ �~l �~r

þ � nF1 I;/; h;~rtð Þ þ mF2 I;/; h;~rtð Þ
� 

: (A1)

We then write down the multi-scale expansions for dI and

gnm~l as

dI ¼ � 1
jþ1dI0 t; sð Þ þ �

2
jþ1dI1 t; sð Þ þ � � � þ �dIj t; sð Þ þ � � �

gnm~l ¼ g0;nm~l t; sð Þ þ �
1

jþ1g1;nm~l t; sð Þ þ � � � �gjþ1;nm~l t; sð Þ þ � � � :

Substituting these expansions into (A1) and the first equation

in (3), and using the Fourier decomposition for the perturba-

tion (4), we obtain

@

@t
�

1
jþ1dI0 t; sð Þ þ �

2
jþ1dI1 t; sð Þ þ � � � þ �dIj t; sð Þ þ � � �

h i
þ�

j
jþ1
@

@s
�

1
jþ1dI0 t; sð Þ þ �

2
jþ1dI1 t; sð Þ þ � � � þ �dIj t; sð Þ þ � � �

h i
¼ �
X
nm~l

F0

nm~l
I0þ dIð Þsin g0;nm~l t; sð Þ þ �

1
jþ1g1;nm~l t; sð Þ þ � � �

h i
(A2)

and

@

@t
g0;nm~l t; sð Þ þ �

1
jþ1g1;nm~l t; sð Þ þ � � �

h i
þ �

j
jþ1
@

@s
g0;nm~l t; sð Þ þ �

1
jþ1g1;nm~l t; sð Þ þ � � �

h i

¼ nX/ I0ð Þ þ mXh I0ð Þ �~l �~r þ
dj nX/ þ mXhð Þ

dIj

���
I0

�
�

1
jþ1dI0 t; sð Þ þ �

2
jþ1dI1 t; sð Þ þ � � �

� �j

j!

þ �
X
nm~l

nF1

nm~l
I0 þ dIð Þ þ mF2

nm~l
I0 þ dIð Þ

h i

� sin g0;nm~l t; sð Þ þ �
1

jþ1g1;nm~l t; sð Þ þ � � �
h i

: (A3)

Combining the leading order Oð�1=ðjþ1ÞÞ terms in Eq. (A2)

and O(1) terms in Eq. (A3) yields to

dI0 ¼ ~dI0ðsÞ; (A4)

g0;nm~l ¼ ½nX/ðI0Þ þ mXhðI0Þ �~l �~r�tþ ~gnm~lðsÞ: (A5)

To find the slowly-varying functions ~dI0ðsÞ and ~gnm~lðsÞ, we

examine the Oð�Þ balance in (A2) along with the Oð�j=ðjþ1ÞÞ
balance in (A3)

@

@t
dIj ¼�

@

@s
~dI0 þ

X
nm~l

F0

nm~l
I0ð Þsin ~gnm~l sð Þ

�
þ ðnX/ I0ð Þ þ mXh I0ð Þ �~l �~rÞt� (A6)

and

@

@t
gj;nm~l ¼ �

@

@s
~gnm~l sð Þ þ dj nX/ þ mXhð Þ

dIj

���
I0

~dI0

j

j!
: (A7)

Elimination of terms leading to secular growth of dIj and

gj;nm~l gives

@

@s
~dI0 ¼

Xresonant

nm~l

F0

nm~l
I0ð Þsin ~gnm~l sð Þ

� 
(A8)

and

@

@s
~gnm~l ¼

dj nX/ þ mXhð Þ
dIj

���
I0

~dI0

j

j!
: (A9)

The last two equations admit the integral of motion

G ¼
~dI

jþ1

0

jþ 1ð Þ!þ
Xresonant

nm~l

F0

nm~l
I0ð Þcos ~gnm~l

dj nX/þmXhð Þ
dIj

���
I0

: (A10)
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