MATLAB Tutorial - Week 1

NOTE: at any point, typing help functionname in the Command window will give
you a description and examples for the specified function. This is very useful and

should not be used in moderation!

1 Define/change variables: working from the ’Command Window’

NOTE: adding a semicolon at the end of a command prevent the result from being displayed in

the command window.

e They are several data “class”. The main ones are integers and strings. String refers to a

sentence and is created using apostrophes:

A="T already love matlab’ = A is a string

A=2 = A is an integer

e Create a 3x3 matrix called A

1 2 3
A= |4 5 6
7 8 9

e Display A’s first column and last row (hint: use colons and end)
e Replace the fifth value of A by a NaN

e Create a 20x5 matrix, B

1 .. 5
6 .. 10

B = ;
96 ... 100

hint: Create an ar-ray first, then use reshape(). You do not have to type every components.

Colons can be used as a shortcut: B=1:1:100; means “From 1 to 100, with an increment of 17

e (Clear your workspace

2 Arithmetic and operation

e Create two 2x2 matrices, A and B

e Compare the results of the following commands:

— A*B with A.*B

— A/B with A./B

— AxA with A"2 and A.”2

You will note that operations in MATLAB follow the same rules as classical operation rules for

matrices. The “dot” is used to specify that you want an element-wise operation.

e Clear your workspace

3 Useful commands and missing values

Create a random array (5x1) A, using rand ()

Calculate the mean, maximum and minimum of A (Use min, max, mean)

Replace one of A’s value by a NaN

Calculate the mean, maximum and minimum of A

For data analysis, self-explanatory commands can be used: min, max, mean, sum, var,.... If
your matrix contains NaN(s), these commands will return NaNs. To avoid this issue (data are often

missing), you can use the equivalent commands that ignore NaNs: nanmin, nanmean,

4 Plotting

e Create the array t

t=-2%pi:0.1:2%pi;

Don’t worry, Matlab know what pi is

e Plot sine of t versus t, using the sin() and plot() command. You can add arguments to
the plot function to change the color, line width, line style, etc of your plot. Experiment

different combinations:

plot(t,sin(t)) classic
plot(t,sin(t),’r’) red curve
plot(t,sin(t),’--g’) dashed, green curve

plot(t,sin(t),’--gs’) dashed, green curve with square markers

If you want to change a lot of parameters, you can use a “handle”. A handle is a variable that
contains all the specifications associated with your curve. Try:

h=plot(t,sin(t));get (h)
The get () command will list all the specifications you can modify. Use the set() command to
modify your curve:

set(h,’linewidth’,2, 'marker’,’x’,’color’,’r’,’linestyle’,’--’, ’markersize’ ,4)

NOTE: the sin(), cos(), tan(),... commands are in radians. If you are working with
degrees, you need to convert to radians! Either you know the formula, either you can never

remember it (like me) and can use the deg2rad() and rad2deg() built-in commands

e Change the limits of the x axis to [-2*pi 2*pi] and y-axis to [-2 2]. You can use both x1im()

and ylim() commands, or just the one axis() command

e Label your plot’s axis using the following commands: xlabel(), ylabel(), title()

e You can use the hold on command to hold on to your plot, and super-imposed any future
plots onto it. Try plotting cos(t) on top of sin(t), in 2 different colors. You can add a legend

using the legend command:

legend(’sin(t)’,’cos(t)’);

e If you want to plot 2 graphs in 2 different windows, figure can be used to create a new

figure window. Try plotting cos(t) and sin(t), in 2 different windows.

e Want 2 separated plots in the same window? Have a look at subplot! (help subplot)

