MATLAB Cheat Sheet

Basic Commands

```
%
;
save filename
save filename x y z
save -append filename x
load filename
!
...
help function/command
clear
clear all
clear x y
home
clc
close
close all
close(H)
global x y
keyboard
A=xlsread(`data',...
'sheet1', `a3:b7')
Succes=xlswrite(...
`results',A, `sheet1', `c7')
```

```
path
addpath c:\my_functions
rmpath c:\my_functions
disp('random statement')
disp(x)
disp(['x=', num2str (x,5)])
fprintf(...
'The %g is %4.2f.\n', x,sqrt(x))
format short
```

format long

Plotting Commands

Indicates rest of line is commented out.
If used at end of command it suppresses output.
If used within matrix definitions it indicates the end of a row.
Saves all variables currently in workspace to file filename. mat.
Saves x, y, and z to file filename. mat.
Appends file filename. mat by adding x.
Loads variables from file filename. mat to workspace.
Indicates that following command is meant for the operating system.
Indicates that command continues on next line.
Displays information about the function/command.
Deletes all variables from current workspace.
Basically same as clear.
Deletes x and y from current workspace.
Moves cursor to top of command window.
Homes cursor and clears command window.
Closes current figure window.
Closes all open figure windows.
Closes figure with handle H.
Defines x and y as having global scope.
When placed in an M-file, stops execution of the file and gives control to the user's keyboard. Type return to return control to the M-file or dbquit to terminate program.
Sets A to be a 5-by-2 matrix of the data contained in cells A3 through B7 of sheet sheet 1 of excel file data.xls Writes contents of A to sheet sheet 1 of excel file results.xls starting at cell C7. If successful success=1.

Display the current search path for .m files
Adds directory c: \my_functions to top of current search path.
Removes directory c: \my_functions from current search path.
Prints random statement in the command window.
Prints only the value of x on command window.
Displays $\mathrm{x}=$ and first 5 digits of x on command window. Only works when x is scalar or row vector.

Displays The 3 is 1.73. on command window.
Displays numeric values in floating point format with 4 digits after the decimal point.
Displays numeric values in floating point format with 15 digits after the decimal point.

```
```

plot(x,y)

```
```

plot(x,y)
plot(y)
plot(y)
plot(x,y, 's')
plot(x,y, 's')
semilogx(x,y)
semilogx(x,y)
semilogy(x,y)
semilogy(x,y)
loglog(x,y)
loglog(x,y)
grid
grid
title('text')
title('text')
xlabel('text')
xlabel('text')
ylabel('text')
ylabel('text')
hold on
hold on
hold off

```
```

hold off

```
```

Note that H must be a positive integer.
Cartesian plot of x versus y.
Plots columns of y versus their index.
Plots x versus y according to rules outlined by s.
Plots $\log (x)$ versus y.
Plots x versus $\log (y)$.
Plots $\log (x)$ versus $\log (y)$.
Adds grid to current figure.
Adds title text to current figure.
Adds x-axis label text to current figure.
Adds y-axis label text to current figure.
Holds current figure as is so subsequent plotting commands add to existing graph.
Restores hold to default where plots are overwritten by new plots.

Creating Matrices/Special Matrices

```
A=[[1 2;3 4}
B=[1:1:10]
A=zeros(n)
A=zeros(m,n)
A=ones(n)
A=ones (n,m)
A=eye (n)
A=repmat (x,m,n)
```

linspace (x1, x2, n)
$A * B$
A ^n
A/B
$A \backslash B$
A. \star B, A. $/ B$,
A. $\backslash \mathrm{B}, \mathrm{A} .{ }^{\wedge} \mathrm{n}$
A'
inv(A)
length (A)
size(A)
size (A,1)
reshape (A, m, n)
$A * B$
$A^{\wedge} n$

A/B
$A \backslash B$
A. $*$ B, A. $/ B$,
A. $\backslash \mathrm{B}, \mathrm{A} .{ }^{\wedge} \mathrm{n}$

A'
inv (A)
length (A)
size(A)
size (A,1)
reshape (A, m, n)

Defines A as a 2-by-2 matrix where the first row contains the numbers 1,2 and the second row contains the number 3,4 .
Defines B as a vector of length 10 that contains the numbers 1 through 10.
Defines A as an n-by-n matrix of zeros.
Defines A as an m-by-n matrix of zeros.
Defines A as an n-by-n matrix of ones.
Defines A as an m-by-n matrix of ones.
Defines A as an n-by-n identity matrix.
Defines A as an m-by-n matrix in which each element is x.

Generates n points between $x 1$ and $x 2$.

Matrix multiplication. Number of columns of A must equal number of rows of B.
A must be a square matrix. If n is an integer and $n>1$ than $A^{\wedge} n$ is A multiplied with itself n times. Otherwise, $\mathrm{A}^{\wedge} \mathrm{n}$ is the solution to $A^{n} v_{i}=l_{i} v_{i}$ where l_{i} is an eigenvalue of A and v_{i} is the corresponding eigenvector.
This is equivalent to $A * i n v(B)$ but computed more efficiently.
This is equivalent to $\operatorname{inv}(A) * B$ but computed more efficiently.
Element-by-element operations.
Returns the transpose of A.
Returns the inverse of A.
Returns the larger of the number of rows and columns of A.
Returns of vector that contains the dimensions of A.
Returns the number of rows in A.
Reshapes A into an m-by-n matrix.

```
kron(A,B)
A = [A X]
A = [A; Y]
```

Computes the Kronecker tensor product of A with B.
Concatenates the m-by-n matrix A by adding the m-by-k matrix X as additional columns.

Concatenates the m-by-n matrix A by adding the k -by-n vector Y as additional rows.

Data Analysis Commands

```
rand (m,n)
randn (m,n)
max (x)
```

$\min (x)$
mean (x)
sum (x)
prod (x)
std(x)
$\operatorname{var}(\mathrm{x})$

Generates an m-by-n matrix of uniformly distributed random numbers. Generates an m-by-n matrix of normally distributed random numbers.
If x is a vector it returns the largest element of x.
If x is a matrix it returns a row vector of the largest element in each column of x.
Same as max but returns the smallest element of x.
If x is a vector it returns the mean of the elements of x.
If x is a matrix it returns a row vector of the means for each column of x.
If x is a vector it returns the sum of the elements of x.
If x is a matrix it returns a row vector of the sums for each column of x.
Same as sum but returns the product of the elements of x.
If x is a vector it returns the standard deviation of the elements of x.
If x is a matrix it returns a row vector of the standard deviations for each column of x.

Same as std but returns the variance of the elements of x.

Conditionals and Loops

```
for i=1:10
    procedure
end
while(criteria)
    procedure
end
if(criteria 1)
    procedure 1
elseif(criteria 2)
    procedure 2
else
    procedure 3
end
Iterates over procedure incrementing \(i\) from 1 to 10 by 1.
Iterates over procedure as long as criteria is true.
If criteria 1 is true do procedure
1, else if criteria 2 is true do procedure 2, else do procedure 3.
```

