MATLAB Cheat Sheet

Basic Commands

8	Indicates rest of line is commented out.
;	If used at end of command it suppresses output.
	If used within matrix definitions it indicates the end of a row.
save filename	Saves all variables currently in workspace to file filename.mat.
save filename x y z	Saves $x, y, and z$ to file filename.mat.
save -append filename x	Appends file filename.mat by adding x.
load filename	Loads variables from file filename.mat to workspace.
!	Indicates that following command is meant for the operating system.
	Indicates that command continues on next line.
help function/command	Displays information about the function/command.
clear	Deletes all variables from current workspace.
clear all	Basically same as clear.
clear x y	Deletes x and y from current workspace.
home	Moves cursor to top of command window.
clc	Homes cursor and clears command window.
close	Closes current figure window.
close all	Closes all open figure windows.
close(H)	Closes figure with handle <i>H</i> .
global x y	Defines x and y as having global scope.
keyboard	When placed in an M-file, stops execution of the file and gives
	control to the user's keyboard. Type return to return control
	to the M-file or dbquit to terminate program.
A=xlsread(`data',	Sets A to be a 5-by-2 matrix of the data contained in
`sheet1', `a3:b7')	cells A3 through B7 of sheet sheet1 of excel file data.xls
Succes=xlswrite(Writes contents of A to sheet sheet1 of excel file
<pre>`results',A, `sheet1', `c7')</pre>	results.xls starting at cell C7 . If successful success= 1.
path	Display the current search path for .m files
addpath c:\my_functions	Adds directory c:\my_functions to top of current search path.
rmpath c:\my_functions	Removes directory c:\my_functions from current search path.
<pre>disp('random statement')</pre>	Prints random statement in the command window.
disp(x)	Prints only the value of x on command window.
disp(['x=',num2str(x,5)])	Displays $x=$ and first 5 digits of x on command window. Only works
	when x is scalar or row vector.
fprintf(
'The %g is %4.2f.\n', x,sqrt(x))	Displays the 3 is 1./3. on command window.
format short	Displays numeric values in floating point format with 4 digits after the decimal point.
format long	Displays numeric values in floating point format with 15 digits after the decimal point.
Plotting Commands	•

Makes H the current figure. If H does not exist is creates H.

	Note that H must be a positive integer.
plot(x,y)	Cartesian plot of x versus y .
plot(y)	Plots columns of y versus their index.
plot(x,y,`s')	Plots x versus y according to rules outlined by s .
semilogx(x,y)	Plots $\log(x)$ versus y .
semilogy(x,y)	Plots x versus $\log(y)$.
loglog(x,y)	Plots $\log(x)$ versus $\log(y)$.
grid	Adds grid to current figure.
<pre>title(`text')</pre>	Adds title text to current figure.
<pre>xlabel(`text')</pre>	Adds x-axis label text to current figure.
<pre>ylabel(`text')</pre>	Adds y-axis label text to current figure.
hold on	Holds current figure as is so subsequent plotting commands add
	to existing graph.
hold off	Restores hold to default where plots are overwritten by new plots.

Creating Matrices/Special Matrices

A=[1 2;3 4]	Defines A as a 2-by-2 matrix where the first row contains the
	numbers 1, 2 and the second row contains the number 3, 4.
B=[1:1:10]	Defines B as a vector of length 10 that contains the numbers
	1 through 10.
A=zeros(n)	Defines A as an n-by-n matrix of zeros.
A=zeros(m,n)	Defines A as an m-by-n matrix of zeros.
A=ones(n)	Defines A as an n-by-n matrix of ones.
A=ones(n,m)	Defines A as an m-by-n matrix of ones.
A=eye(n)	Defines A as an n-by-n identity matrix.
A=repmat(x,m,n)	Defines A as an m-by-n matrix in which each element is x .

linspace(x1, x2, n) Matrix Operations	Generates n points between $x1$ and $x2$.
A*B	Matrix multiplication. Number of columns of A must equal number of rows of B.
A^n	A must be a square matrix. If n is an integer and $n > 1$ than A ⁿ is
	A multiplied with itself n times. Otherwise, A ⁿ is the solution to
	$A^n v_i = l_i v_i$ where l_i is an eigenvalue of A and v_i is the corresponding
	eigenvector.
A/B	This is equivalent to A*inv(B) but computed more efficiently.
A\B	This is equivalent to inv (A) *B but computed more efficiently.
A.*B,A./B,	Element hu element en austion a
A.\B,A.^n	Element-by-element operations.
A'	Returns the transpose of A.
inv(A)	Returns the inverse of A .
length(A)	Returns the larger of the number of rows and columns of A .
size(A)	Returns of vector that contains the dimensions of A .
size(A,1)	Returns the number of rows in A.
reshape(A,m,n)	Reshapes A into an m-by-n matrix.

kron(A,B)	Computes the Kronecker tensor product of A with B .
A = [A X]	Concatenates the m-by-n matrix A by adding the m-by-k matrix X as
	additional columns.
A = [A; Y]	Concatenates the m-by-n matrix A by adding the k-by-n vector Y as
	additional rows.

Data Analysis Commands

<pre>rand(m,n)</pre>	Generates an m-by-n matrix of uniformly distributed random numbers.
randn(m,n)	Generates an m-by-n matrix of normally distributed random numbers.
max(x)	If x is a vector it returns the largest element of x .
	If x is a matrix it returns a row vector of the largest element in each
	column of x.
min(x)	Same as \max but returns the smallest element of x .
mean(x)	If x is a vector it returns the mean of the elements of x .
	If x is a matrix it returns a row vector of the means for each column of x .
sum(x)	If x is a vector it returns the sum of the elements of x .
	If x is a matrix it returns a row vector of the sums for each column of x .
prod(x)	Same as sum but returns the product of the elements of x .
std(x)	If x is a vector it returns the standard deviation of the elements of x .
	If x is a matrix it returns a row vector of the standard deviations for each
	column of x.
var(x)	Same as std but returns the variance of the elements of x .

Conditionals and Loops

for i=1:10	
procedure	Iterates over procedure incrementing i from 1 to 10 by 1.
end	
while(criteria)	
procedure	Iterates over procedure as long as criteria is true.
end	
if(criteria 1)	
procedure 1	
elseif(criteria 2)	If criteria 1 is true do procedure
procedure 2	1, else if criteria 2 is true do
else	procedure 2, else do procedure 3.
procedure 3	
end	