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ABSTRACT

Influences of time-dependent precipitation on water mass transformation and heat budgets in an idealized

marginal sea are examined using theoretical and numerical models. The equations proposed by Spall in 2012 are

extended to cases with time-dependent precipitation whose form is either a step function or a sinusoidal

function. The theory predicts the differences in temperature and salinity between the convective water and the

boundary current as well as the magnitudes of heat fluxes into the marginal sea and across the sea surface.

Moreover, the theory reveals that there are three inherent time scales: relaxation time scales for temperature

and salinity and a precipitation time scale. The relaxation time scales are determined by a steady solution of the

theoretical model with steady precipitation. The relaxation time scale for temperature is always smaller than

that for salinity as a result of not only the difference in the form of fluxes at the surface but also the variation in

the eddy transport from the boundary current. These three time scales and the precipitation amplitude de-

termine the strength of the ocean response to changes in precipitation and the phase relation between pre-

cipitation, changes in salinity and temperature, and changes in heat fluxes. It is demonstrated that the theoretical

predictions agree qualitatively well with results from the eddy-resolving numerical model. This demonstrates

the fundamental role of mesoscale eddies in the ocean response to time-dependent forcing and provides a

framework with which to assess the extent to which observed variability in marginal sea convection and water

mass transformation are consistent with an external forcing by variations in precipitation.

1. Introduction

The oceanic thermohaline circulation plays an impor-

tant role in the global heat budget and hydrological cycle

by transporting heat from low to high latitudes and

freshwater from high to low latitudes. Marginal seas (e.g.,

Labrador Sea, Mediterranean Sea, and Greenland Sea)

are especially important for the thermohaline circulation

because they are one of the primary origins of the deep-

ocean water (e.g., Pickart et al. 2002) that spreads widely

throughout the ocean (Talley and McCartney 1982).

Amarginal sea can be roughly divided into an interior

and a boundary region, which are designated as light

blue and orange, respectively, in Fig. 1. In the boundary

region, there is a strong, surface-intensified current

along the bottom topography, while there is deep con-

vection in the interior with weak (horizontal) mean

flows, as shown by direct velocity measurements of

O(1) cm s21 in the Labrador Sea (Lavender et al. 2000).

Exchange between the two regions is regulated by baro-

clinic eddies (e.g., Khatiwala and Visbeck 2000; Lilly and

Rhines 2002; Lilly et al. 2003; Spall 2004). Buoyancy loss

in the boundary current, due to eddies and atmospheric

cooling, decreases the baroclinic transport along the

perimeter (Walin et al. 2004; Spall 2004). This baro-

tropization of the current requires a net downwelling.

This downwelling can occur either in a barotropic coastal

current (Walin et al. 2004) or directly in the baroclinic

boundary current (Spall 2010; Cenedese 2012). In the

interior, there may be many plumes where there is strong

downwelling; however, the mean downwelling is quite

small because of the compensatory upwelling (Schott

et al. 1993; Send and Marshall 1995; Marshall and Schott
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1999); themean vertical velocity is less than 0.1mms21 by

scaling arguments with the vorticity equation.

One method for analyzing the thermohaline circula-

tion is to use a simplified system such as the two-box

model of Stommel (1961). In this model, one box des-

ignates the low-latitude ocean, while the other desig-

nates the high-latitude ocean. The exchange between

the two boxes is due to the mean flow directly driven by

the pressure gradient. Such simplified systems allow for

nondimensional analytic solutions that make parameter

dependencies and inherent physics clearer.

Recently, several studies have proposed simplified

models for marginal seas (e.g., Spall 2004, 2011, 2012;

Walin et al. 2004; Straneo 2006; Wahlin and Johnson

2009; Born and Stocker 2014). Spall (2012) derived a

new simplified system [referred to here as the dynamical

system (DS)] with a steady heat and freshwater flux

forcing. The governing equations of the DS are similar

to those of Stommel, but the model physics differ in

important ways. The most essential difference is that the

exchange between the two boxes is due not to the mean

flow but to baroclinic eddies. The DS predicts the prop-

erties of convective water and the strength of meridional

overturning circulation as well as the magnitude of pre-

cipitation required to shut down deep convection. Spall’s

theory was supported by comparing the theoretical pre-

dictions with the results from a numerical model in which

mesoscale eddies were explicitly resolved.

Several studies have shown that excess precipitation

may lead to a reduction in the formation of deep-ocean

water, the meridional heat transport, and the strength of

meridional overturning circulation (e.g., Rahmstorf

1995; Rahmstorf et al. 2005; Spall 2012). In the present

paper, we focus on time-dependent precipitation and

examine responses of the marginal sea by using a time-

dependent version of the DS proposed by Spall (2012).

Two kinds of precipitation are considered: a step func-

tion and a sinusoidal function. A superposition of these

forcings can produce any time-dependent forcing so that

the present study gives typical examples of the responses

of marginal seas to changes in precipitation. This ide-

alized approach also allows for a clear demonstration of

the controlling physics and inherent time scales of the

problem. The basic predictions from the DS are tested

by comparison with results from an eddy-resolving

numerical model.

The structure of the paper is as follows: In section 2,

the DS with time-dependent precipitation is examined

by a linear system derived from theDS.We compare the

relaxation time scales for temperature and salinity given

by the linear system with those obtained by Wahlin and

Johnson (2009). In section 3, the predictions from the

DS are compared with quantities diagnosed from

eddy-resolving numerical model simulations. Finally, in

section 4, the results are summarized.

2. Dynamical system with time-dependent
precipitation

a. Extension of the DS proposed by Spall (2012)

We examine temperature and salinity of convective

water masses by the simplified dynamical system pro-

posed by Spall (2012). This DS predicts differences in

temperature and salinity between a boundary current

and a convective interior in an idealized marginal sea,

which are designated as orange and light blue in Fig. 1,

respectively. The temperature and salinity fluxes be-

tween the two regions are regulated by baroclinic

eddies. We further made the following four assump-

tions: (i) Baroclinic eddy fluxes are parameterized as

y0T 0 5 cV(TBin 2TI), where y0T 0 is the average of eddy

temperature fluxes, V is a scale for the alongfront ve-

locity; TBin is the temperature of the inflowing boundary

current;TI is the temperature averaged over the interior;

and c is a nondimensional constant that reflects the

strength of eddy fluxes resulting from baroclinic in-

stability (Spall 2004). Note that c includes the stabili-

zation effect due to the bottom slope and is fixed to be

0.007 as in Spall (2012). (ii) For the purposes of pa-

rameterizing baroclinic instability, temporal and spatial

variation in the boundary current can be ignored, that is,

TBin and SBin are constant, where SBin is the salinity of

the inflowing boundary current. (iii) The scale V is ob-

tained by the thermal wind equation [(3)]. (iv) The in-

terior is always horizontally and vertically uniform. The

symbols and notations used in the present paper

are summarized in Table 1. The configuration of the

FIG. 1. Schematic illustration of the marginal sea for the thermal

mode, in which seawater in the interior is denser than that in the

boundary current and the boundary current is cyclonic. Here, the

convective region (light blue) is referred to as the interior or in-

terior region, while the surrounding region (orange) is referred to

as boundary current or boundary region. The entire region (i.e., the

sum of the interior and the boundary current) is called the basin.

See text for details.
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idealized marginal sea (Fig. 1) and the assumption iv are

supported by observations (e.g., Lavender et al. 2000;

Lazier et al. 2002; Pickart et al. 2002), while the other

assumptions i–iii are supported by numerical simula-

tions (e.g., Spall 2011, 2012).

Two kinds of atmospheric forcing are considered: heat

and freshwater fluxes across the sea surface. The heat

flux is parameterized by a relaxation of the sea surface

temperature toward an atmospheric temperature with a

relaxation constant G (Haney 1971). The freshwater flux

(evaporation minus precipitation) can be specified as

E0 1 E0(t), where E0 is constant and E0(t) is time de-

pendent. Unlike for heat flux, there is no feedback be-

tween the sea surface salinity and the freshwater flux.

TABLE 1. Symbols and notations used in the present paper. A quantity with a star represents the corresponding dimensional quantity.

Symbol Definition Fixed value Units

TBin (TBout) Temperature of the inflowing (outflowing) boundary current — (—) 8C (8C)
SBin (SBout) Salinity of the inflowing (outflowing) boundary current — (—) ppt (ppt)

TI Temperature of the interior — 8C
SI Salinity of the interior — ppt

V Scale for the alongfront velocity defined in (3) — m s21

G Relaxation constant of heat fluxes across the sea surface 10 Wm22 8C21

E0 Constant freshwater flux 22 3 1028 m s21

E0(t) Time-dependent freshwater flux — m s21

t(t+) Nondimensional (dimensional) time — (—) — (s)

H0 Averaged depth of the interior 2000 m

A Surface area of the interior — m2

P Perimeter of the interior — m

Hsill Sill depth 1000 m

r0 Representative density 1000 kgm23

S0 Representative salinity 35 ppt

Cp Specific heat 4000 J kg21 8C21

TA Atmospheric temperature averaged over the interior — 8C
g Gravitational acceleration 9.8 m s22

f0 Reference Coriolis parameter 1 3 1024 s21

L Width of the sloping topography 75 3 103 m

aT Thermal expansion coefficient 0.2 kgm23 8C21

aS Haline expansion coefficient 0.8 kgm23

T* TBin 2 TA 6.2 8C
N2 Squared buoyancy frequency 2 3 1026 s22

c Strength of parameterized eddy fluxes (e.g., y0T 0 5 cV(TBin 2TI)) 0.007 —

DT (TBin 2TI)/T* — —

DS (SBin 2SI)aS/(aTT*) — —

t Characteristic time scale for nondimensionalization defined in (6) 3.2 yr

� Eq. (7) 0.18 —

m Eq. (7) 1.1 3 1022 —

g0 Eq. (7) 21.6 3 1022 —

g0(t) Obtained by replacing E0 in g0 with E0(t) — —

Dg0 Magnitude of g0(t) [5Dg0Q(t) or Dg0 sin(vt)] — —

Q(t) Heaviside step function [Q 5 1 (t $ 0) and 0 (t , 0)] — —

v(v+) Nondimensional (dimensional) frequency — (—) — (yr21)

DTs and DSs Steady thermal-mode solution of the DS without g0(t) — —

DT 0(t) and DS 0(t) Perturbations from DTs and DSs (or time-averaged values) — —

Drs DTs 2 DSs — —

Dr0(t) DT 0(t) 2 DS 0(t) — —

tT(t
+
T ) Relaxation time scale for DT 0, tT [ (2m/�1Drs 1DTs)

21 1.4 (4.5) — (yr)

tS(t
+
S ) Relaxation time scale for DS 0, tS [ Drs

21 4.1 (12.9) — (yr)

t0 Nondimensional initial time — —

C 2Dg 0/(4�) — —

fT tan21(vtT) — —

fS tan21(vtS) — —

HFsurf(HF+
surf) Eq. (16) — (—) — (J s21)

HFsill(HF+
sill) Eq. (18) — (—) — (J s21)

DTave and DSave Time-averaged DT and DS over one period (sine function case) — —

DTAT, DSAT,

and DrAT

Time-averaged DT, DS, and Dr over the last 20 yr (step

function case)

— —
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Huang (1993) showed that such a virtual salt flux bound-

ary condition can result in significant errors when the

surface salinity is far from the mean surface salinity and

advocates for the use of a more realistic freshwater flux

through the surface. However, the surface salinity in the

basin is never far from its mean value in the present study

and our simplified approach allows for relatively simple

analytic solutions and interpretation of the controlling

physics. Note that wind stress is not included in the DS,

but it is included in the numerical model in section 3.

Temperature and salinity equations spatially in-

tegrated over the interior are obtained as follows:

H0A
dTI

dt+
5PHsillcV(TBin 2TI)2

AG(TI 2TA)

r0Cp

, and

(1)

H0A
dSI
dt+

5PHsillcV(SBin2SI)1AS0[E01E0(t)] , (2)

where t+ is time; SI is the salinity averaged over the in-

terior; H0 is the averaged depth of the interior; A is the

surface area of the interior; P is the perimeter of the in-

terior where the topography is flat or the topographic

contours are closed; Hsill is the sill depth between the

marginal sea and the open ocean; r0 is a representative

ocean density;Cp is the specific heat of seawater;TA is the

atmospheric temperature spatially averaged over the in-

terior; and S0 is a representative salinity. Equations (1)

and (2) describe the time evolution of temperature and

salinity in the interior, respectively, which are changed by

baroclinic eddy fluxes confined above the sill depth and by

the atmospheric forcing at the sea surface. The boundary

current is roughly confined above the sill depth (Spall

2004; Walin et al. 2004) and hence baroclinic eddy fluxes

from the boundary current are also concentrated there.

The characteristic velocity V is given by the thermal

wind equation (assumption iii) following Spall (2012):

V5
gHsill

2r0 f0L
[aT(TBin 2TI)2aS(SBin 2 SI)]

5
gHsill

2r0 f0L
aTT*(DT2DS) , (3)

where g is the gravitational acceleration; f0 is the refer-

ence Coriolis parameter; L is the width of the sloping

topography over which the boundary current lies; aT is

the thermal expansion coefficient (kgm23 8C21); and aS

is the haline expansion coefficient (kgm23). Note that

a linear equation of state is used. Quantities of DT
and DS are the nondimensionalized differences in tem-

perature and salinity between the interior and the

boundary current, respectively:DT[ (TBin2TI)/T* and

DS[ (SBin2 SI)aS/(aTT*), where T*5TBin2TA.

Using (1), (2), and (3), we obtain the nondimensional

equations for DT and DS:

d

dt
DT52DTjDT2DSj1 2m

�
(12DT), and (4)

d

dt
DS52DSjDT2DSj2 g01 g0(t)

4�
, (5)

where t is nondimensional time. Note that a quantity

with a star is the corresponding dimensional quantity,

for example, t+. Time is nondimensionalized by the

characteristic time scale

t[
H0A

PHsill

1

c

2r0 f0L

gHsillaTT*
. (6)

Nondimensional parameters �, m, and g0 are constant,

while g0 represents the nondimensional time-dependent

precipitation:

�[
cP

L
, m[

AG f0
aTgCpH

2
sillT*

, g0[
8Ar0 f0S0aSE0

gH2
silla

2
TT*

2
. (7)

The value of g0(t) is obtained by replacing E0 in g0 with

E0(t). The DS consists of (4) and (5) with (7), which is

the same as in Spall (2012) except for the time derivative

terms and g 0(t). The factor � represents the ratio of

the inflowing water fluxed into the interior by eddies

cVPHsill to that in the boundary current VLHsill. The

constantm/� characterizes the balance between the surface

heat flux and the eddy heat fluxes, while g/� characterizes

the balance between the surface freshwater flux and the

eddy salinity fluxes (Spall 2011, 2012). A new parameter

t characterizes the time it takes to flush the interior by

eddies, similar to that in Straneo (2006).

In the present paper, two forms of g0(t) are considered:
the Heaviside step function Dg0Q(t) and the sine function

Dg0 sin(vt). A superposition of these two types of forcing

can produce any time-dependent forcing, so that the re-

sults obtained here are typical examples of the response of

marginal seas to changes in precipitation. Amplitudes and

frequencies of g0 will be varied, while �,m, and g0 are fixed
to be 0.18, 1.13 1022, and21.63 1022, respectively, as is

appropriate for the marginal seas in the subpolar North

Atlantic (Labrador Sea and Greenland Sea; Spall 2012).

The range of Dg0 is between60.4g0 for the step function

and6g0 for the sine function. Themaximumprecipitation

considered in the present paper is 2g0. The stable thermal

mode still exists in the DS with the doubled steady pre-

cipitation (g0 / 2g0 and g0 5 0); however, this value is

close to what is required to shut down deep convection

(Spall 2012). It is beyond the present paper to examine the

DS with g0 whose amplitude is large enough to cause the

shutdown of deep convection. The period of the sine
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function is varied between 10 and 120yr (3.17 and 38.0 in

nondimensional numbers). The initial condition is taken

to be the steady solution with g0 5 0. All solutions in the

above parameter space (i.e., v–Dg0 space) are limit cycles

that attract nearby points. Solutions with different initial

values approach the same periodic solution (not shown in

detail). Thus, a phase constant in g0 is not considered.

b. Decoupled linear equations

Equations (4) and (5) are still complicated because

they are nonlinear and coupled. If they are linearized

around a steady solution, the resulting linear equations

are still coupled. In the stable thermal mode, 1. DTs .
Drs . DSs . 0, where a subscript s denotes a steady so-

lution with steady precipitation and Drs [ DTs 2 DSs.
This inequality means that the seawater in the boundary

current is warmer and saltier than that in the interior, as

in Fig. 1. Ignoring the smallest linear term proportional

to DSs in (5), we obtain the decoupled linear equations

(DLEs) from (4) and (5):

d

dt
DT 0 52DTsDr

0 2DT 0Drs 2
2m

�
DT 0

52
1

tT
DT 0 1DTsDS

0, and (8)

d

dt
DS0 52DS0Drs 2

g0(t)
4�

52
1

tS
DS02

g0(t)
4�

, (9)

where a perturbation is denoted by a prime and Dr0 [
DT 0 2DS0 (i.e.,DT5DTs1DT 0 and the same forDS and
Dr). Relaxation time scales for temperature and salinity

are tT [ (2m/� 1 Drs 1 DTs)
21 and tS [Dr21

s , respec-

tively. It is worth noting that tT is always smaller than tS.

The temperature relaxation time scale is influenced by

the restoration of the atmospheric temperature (2m/�

in tT), the anomalous eddy flux resulting from density

anomalies (DTs in tT), and the anomalous eddy flux

resulting from temperature anomalies (Drs in tT). In

contrast, the salinity relaxation time scale results only

from salinity anomalies carried by the mean density

anomaly. A steady solution for a sine function forcing is

obtained by solving (4) and (5) with g0 5 0, while one for a

step function is obtained by solving with g0 1 Dg(const).
In other words, a new steady state after transition at t 5
0 is used to construct the DLEs with the step function

precipitation, which means that the forcing g0(t) is re-

placed with 2Dg0Q(2t) in (9).

The DLEs are evaluated by comparison to the solution

of the DS, where the initial condition is the equilibrium

without time-dependent precipitation. The DLEs and DS

are solved by the fourth-order Runge–Kutta method. A

nondimensional time step is 23 1023 (’23 105 s) for step

function precipitation, while it is chosen for a sine func-

tion such that one period is equally divided by 6000. Note

that the results are not sensitive to the above choice of

time step. Figure 2 shows the maximum differences in DT
andDS between theDS and theDLEs that are normalized

by the maximum variations in respective DS solutions. It

is found that the DLEs can reproduce the DS solution

within O(10%) accuracy in all parameter space consid-

ered in the present paper. In the step function case

(Fig. 2a), the difference is asymmetric about the sign of

Dg0/g0, which may reflect the asymmetry of the transition

time scale discussed in section 3b. In the sine function case

(Figs. 2b,c), the difference tends to be large as the pre-

cipitation period or amplitude is large. This tendency

likely reflects the fact that the interior can strongly re-

spond to changes in precipitation when the precipitation

FIG. 2. (a) The maximum differences in DT and DS between the DLEs and the DS for the step function pre-

cipitation [g0(t)5 Dg0Q(t)]. (b),(c) As in (a), but for the maximum differences in (b) DT and (c) DS for sine function

precipitation [g0(t) 5 Dg0 sin(vt)]. Each maximum difference is normalized by a difference in the DS solution be-

tween the maximum and the minimum. The contour interval (CI) is 2.5% in (b) and (c).
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period or amplitude is large. This point is further discussed

in sections 2b(2) and 2c.

Equations (8) and (9) indicate that there are three

time scales inherent in the idealized marginal sea. The

first time scale is the relaxation time scale tT for DT 0 in
(8), which consists of the atmospheric cooling and part

of the eddy temperature fluxes. The second one is the

relaxation time scale tS for DS
0 in (9), which is equal to

the eddy flushing time scale. The term proportional

to 21/tT or 21/tS reduces a perturbation and forces

the state to equilibrium without time-dependent pre-

cipitation. The third time scale may be given by g0(t).
When precipitation is a sine function, 1/v is the third

time scale, while it does not appear for a step function

because the precipitation changes instantaneously.

The dimensionalized time scales are obtained by mul-

tiplying by t defined in (6): t+S 5 12.9 yr and t+T 5 4.5 yr.

Note again that a star indicates the corresponding di-

mensional quantity. It is worth noting that tS and tT are

determined only by �, m, and g0 because both time scales

are given by the DS solution without time-dependent

precipitation.

The relaxation time scale for temperature is always

smaller than that for salinity as in Wahlin and Johnson

(2009). They argued that the difference in the surface

flux boundary condition makes the temperature ad-

justment faster than that of salinity. However, there are

four differences from their theory: First, they examined

the structure of a steady boundary current in a marginal

sea. This means that quantities obtained as their ad-

justment length scales divided by the velocity of the

boundary current (the constant Q in their study) cor-

respond to the relaxation time scales. Second, the

surface freshwater flux is not proportional to S in (2),

while it is in their theory. This difference makes the

time-scale separation clearer, that is, tS becomes larger;

the denominator of tS does not include a relaxation

coefficient of the surface freshwater flux, and tS is simply

controlled by the eddy dynamics, given by Dr21
s . The

third and most important difference is that the heat and

salt transport by eddies is proportional to Dr, while it is

constant in their model (designated as M, which also

includes the Ekman transport). This difference again

makes the time-scale separation larger, but in this case,

tT becomes smaller. The time scale tT is (2m/� 1 Drs 1
DTs)

21, in which DTs results from the variation in the

eddy transport proportional to Dr0 in (8). Note that M

in their theory roughly corresponds to Drs. As 2m/� and

DTs are positive, not only the boundary conditions in

temperature and salinity but also the eddy transport

characterized by the density gradient makes tT smaller

than tS. It is worth noting that because of the variation

in the eddy transport, precipitation changes DT 0 indi-
rectly through DS0 in (8). This point also makes the

fourth difference from their results, as discussed in the

next subsection.

The above three time scales determine the solution of

(8) and (9). Thus, a relationship between the time scales

and the solution of the DLEs gives physical insights into

the DS and the dynamics of the idealized marginal sea.

The DLEs are now examined separately for step func-

tion and sine function precipitation.

1) DLES WITH STEP FUNCTION PRECIPITATION

The general solution for step function precipitation is

obtained as follows,

DT 0(t)5
�
DT 0(t0)2

DTsDS
0(t0)

1/tT 2 1/tS

�
e2(t2t

0
)/t

T 1
DTsDS

0
h(t)

1/tT 2 1/tS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DT 0

h
(t)

1DT 0
p(t) , (10)

DS0(t)5 DS0(t0)e
2(t2t

0
)/t

S|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
DS0

h
(t)

1DS0p(t) , (11)

DT 0
p(t)5

8>>>><
>>>>:

tSDg
0DTs

4�

�
tT [12 e2(t2t

0
)/t

T ]2
1

1/tT 2 1/tS
[e2(t2t

0
)/t

S 2 e2(t2t
0
)/t

T ]

�
(t, 0)

tSDg
0DTs

4�

"
tT(12 et0/tT )e2t/t

T 2
e2t/t

T

1/tT 2 1/tS
(et0/tS 2 et0/tT )1

12 et0/tS

1/tT 2 1/tS
(e2t/t

S 2 e2t/t
T )

#
(t$ 0)

, and

(12)
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DS0p(t)5

8>>><
>>>:

tSDg
0

4�
[12 e2(t2t

0
)/t

S ] (t, 0)

tSDg
0

4�
(12 et0/tS)e2t/t

S (t$ 0)

, (13)

where t0 is the initial time, and subscripts h and p de-

note the homogeneous and particular solution, respec-

tively. Here, t0 is negative, meaning that the initial time is

before t 5 0 when precipitation changes instantaneously.

When t0 is positive or zero, DT 0
p(t)5DS0p(t)5 0, and the

homogeneous solution remains only. It should be em-

phasized here that the general solution can satisfy any

initial condition.

The general solution describes the relaxation toward

the (steady) equilibrium state. When t $ 0, the solution

approaches zero, as DTs and DSs are the steady solution

after the precipitation changes at t 5 0. In contrast,

when t , 0, DT 0 and DS0 approaches tTDTstSDg
0/(4�)

and tSDg
0/(4�), respectively. Both values added to

DTs and DSs, respectively, are the approximate steady

solution before the precipitation changes. When the

precipitation strengthens at t 5 0 (i.e., Dg0 , 0), the

equilibrium values of DT and DS when t $ 0 (i.e., DTs

and DSs) are larger than those in t , 0 [i.e., DTs 1
tTDTstSDg

0/(4�) and DSs 1 tSDg
0/(4�), respectively].

This result means that the convective water in the in-

terior becomes cold and fresh comparedwith that before

the precipitation strengthens and is also consistent with

the relation between the water mass properties and the

magnitude of steady precipitation (Spall 2012).

The salinity relaxation is described by the exponential

decay whose time scale is tS, while the temperature re-

laxation is dependent on the two different exponentials

whose time scales are tS and tT, respectively. The values

of tT and tS depend onDTs and/orDSs, both of which are
changed by Dg0: 4.48 yr , t+T , 4.51 yr and 11.9 yr ,
t+S , 14.5 yr. In each case, tS is about 3 times as large as

tT. Thus, the temperature relaxation is characterized not

by the relaxation time scale of temperature tT but by

that of salinity tS. This result essentially comes from the

fact that temperature is indirectly changed by precip-

itation through the variation in the eddy transport

represented by the term with Dr0 in (8). This point is

the fourth difference from the theory by Wahlin and

Johnson (2009). If the variation in the eddy transport is

ignored as in Wahlin and Johnson (2009), the tempera-

ture relaxation is described by the exponential with the

time scale tT.

Hereafter, the initial time t0 is set to be zero, which

makes the particular solution zero. It should be em-

phasized that the particular solution is similar to the

homogeneous one as seen in (10)–(13); DT 0
h and DT 0

p

consist of the exponentials characterized by tT or tS,

while DS0h and DS0p are only by the exponential with the

time scale tS. The treatments with t0 5 0 make the

comparisons with numerical simulations easier.

2) DLES WITH SINE FUNCTION PRECIPITATION

The general solution for sine function precipitation is

obtained as follows:

DT 0(t)5
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/t2S1v2
q DTsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/t2T 1v2
q sin(vt2fS 2fT)

1T 0
h(t), and

(14)

DS0(t)5
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/t2S1v2
q sin(vt2fS)1 S0h(t) , (15)

where C [ 2Dg0/(4�), fT [ tan21(vtT), and fS [
tan21(vtS). Note again that the basic steady solution

is the equilibrium without g0, where 2g0(t)/(4�) 5
C sin(vt). The first terms in (14) and (15) represent the

particular solution with a sine function forcing, while the

second ones are the homogenous solution whose forms

are the same as those in (10) and (11). We further ex-

amine the particular solution in detail.

The phases (fT and fS) are determined only by the

three time scales: 1/v, tT, and tS, while the amplitudes

of DT 0 and DS0 depend on these time scales and are

also linearly dependent on the precipitation amplitude

through C. The value of 1/v should be used as the third

time scale1 rather than the precipitation period 2p/v.

This is because v without 2p appears in the DS, DLEs,

and their solutions. A magnitude relation between 1/v,

tT, and tS determines characteristics of the DLE solu-

tion. The value of 1/v is referred to as the period in this

and the next subsection.

First, DS0 is examined. When the forcing period is

sufficiently long,2 such that 1/v � tS, (9) is approxi-

mately reduced to 0 ’ 2DS0/tS 1 C sin(vt), indicating

that the eddy salinity flux instantaneously balances

the time-dependent precipitation. In other words, DS
takes a quasi-steady state. The solution is also reduced

to DS0 ’ CtS sin(vt). When the precipitation is strong

1 This treatment also has a mathematical reason. In general, a

periodic solution has a form of sin(vt) 5 sin(2pt/Tperiod), while an

exponentially decaying solution is proportional to exp(2t/trelax),

whereTperiod and trelax are positive constants. This difference in the

solution suggests that v (or 1/v) should be compared with 1/trelax
(or trelax).

2 Note that we consider an asymptotic case here. Roughly

speaking, the inequality means that 1/v is at least one order of

magnitude larger than tS, while an asymptotic solution is some-

times valid outside the range of the inequality.
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(i.e., sin(vt)’ 1), DS0 is positive and large, which means

that the interior is fresher than that with weak pre-

cipitation [i.e., when sin(vt) is negative]. The larger DS
(5DSs 1 DS0) generally means that the salinity of the

interior SI is lower, as DS is proportional to SBin 2 SI, in

which SBin is constant in the DS and nearly constant in

the numerical model (the maximum variation is much

smaller than 1% of the time-mean SBin). A similar thing

is also observed for DT, but in this case, its large value

indicates that the interior is cold.

On the other hand, when the forcing period is suffi-

ciently short, such that tS � 1/v, (9) is approximately

reduced to dDS0/dt ’ C sin(vt), which indicates that the

adjustment due to the eddies is not effective. This is

because the relaxation time scale by eddies tS is much

longer than the precipitation period 1/v. The solution is

also reduced to DS0 ’2C/v cos(vt). The maximum DS0

lags 908 behind the g0 minimum, which means that the

interior is freshest 908 after the strongest precipitation

because freshwater accumulates in the interior. These

are essentially one-dimensional solutions.

Similar discussion on DT 0 can be made; however, it is

now the DS0 variation that acts as a low-frequency

forcing to DT 0. It should be emphasized again that pre-

cipitation changes DT 0 indirectly through the variation

in DS0 (i.e., variation in the eddy transport). More

specifically, tS and C sin(vt) are replaced with tT and

DTsDS
0(t), respectively, in the previous discussion.

The DLE solution [(14) and (15)] indicates that the

amplitudes of DT 0 and DS0 tend to decrease with an in-

crease inv, and in particularDT 0 decreasesmore rapidly

by a factor of 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/t2

T
1v2

q
. This fact suggests that the

marginal sea cannot follow the rapid (tT and tS � 1/v)

change in precipitation. It is also clear that the DT 0

amplitude is generally smaller than the DS0 amplitude

by a factor of DTs/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/t2

T
1v2

q
. This is because DS0 is

forced by precipitation, whileDT 0 is forced byDS0 whose
amplitude is reduced by the eddy salinity fluxes.

c. Temperature, salinity, and heat fluxes with sine
function precipitation

In this subsection, we examine the DS [(4) and (5)]

with g0 5 Dg0 sin(vt) and interpret results with the

DLEs. Figures 3a and 3b show the time series of DT
(solid curves), DS (dashed curves), and g0 (dashed–

dotted curves) with 20- and 120-yr period, respectively,

obtained from the DS after a sufficiently long time in

which an influence of the initial adjustment described by

the homogeneous solution in (14) and (15) is negligible.

As predicted by the DLEs, the amplitudes of DT 0 and
DS0 increase with an increase in the period; the DT 0

amplitude is 4.8 times larger in Fig. 3b than in Fig. 3a,

while that of DS0 is 3.3 times larger. Note that the DT 0

amplitude is multiplied by 4 in Fig. 3a for ease of com-

parison, while such scaling is not used in Fig. 3b.

In the 20-yr periodic case (Fig. 3a), the responses of

DT and DS to the precipitation are significantly de-

layed. This delay is supported by the time-scale sep-

aration: t+T 5 4.5 yr and t+S 5 12.9 yr, while

1/v+ 5 20 yr/(2p) ; 3 yr. The magnitude relation is

roughly categorized into the case with t+S and

t+T . 1/v+. Thus, the DLEs indicate that the DS max-

imum is about 908 behind the g0 minimum, while the

DT maximum is about 908 behind the DS maximum, as

seen in Fig. 3a, although the delay of the DTmaximum

is slightly overestimated by the DLEs. In contrast,

Fig. 3b suggests that the 120-yr periodic solution is quasi

steady at each time. The interior is coldest and freshest,

that is,DT andDS are largest, when precipitation is strong,
that is, g0 , 0. The time-scale separation also supports this

quasi steadiness: as 1/v+ 5 120yr/(2p) ; 20yr, the

magnitude relation is roughly categorized into the other

case with 1/v+ . t+S and t+T .

Next, the heat budget in the basin is analyzed by the

meridional heat fluxes across the sill (referred to as

HFsill) and the heat fluxes across the sea surface (re-

ferred to as HFsurf). Precipitation indirectly causes var-

iations of HFsill andHFsurf. The termHFsurf is the sum of

the heat fluxes across the surfaces of the interior and the

boundary region as follows:

HF+
surf 5G[A(TI2TA)1PL(TBin 2TA)]

5
r0CpAH0T*

t

2m

�
(12DT)1GT*PL, (16)

where HF+
surf is positive when heat is lost to the atmo-

sphere (PL is the surface area of the boundary current).

Here, the temperature change in the boundary current is

ignored, as is consistent with assumption ii. Spall (2011)

showed that, for similar configurations, the temperature

change along the perimeter has to be taken into account

by replacing P with an effective perimeter, when

G $ 60Wm22 8C21. In the present paper, G is fixed to

be 10Wm22 8C21, indicating that such treatment is not

necessary.

The heat budget in the basin can be obtained by in-

tegrating the temperature equation over the basin:

r0CpH0A
dTI

dt+
5 r0CpVHsillL(TBin2TBout)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HF+
sill

2 G[A(TI2TA)1PL(TBin 2TA)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HF+

surf

,

(17)
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where the temperature change in the boundary current

is ignored again on the left-hand side. The term HF+
sill is

defined as the difference in heat fluxes between the east

inflow and the west outflow (see Fig. 1), where HF+
sill is

positive when the net heat flows into the basin. The

value HF+
sill can be represented in terms of DT and DS by

replacing the time derivative of TI in (17) with the DS

for DT [(4)]:

HF+
sill5

r0CpAH0T*

t
DTjDT2DSj1GT*PL. (18)

The terms HF+
sill and HF+

surf are nondimensionalized by

r0CpAH0T*/t. The value of HFsill is equal to the sum of

the eddy heat fluxes from the boundary current into the

interior [the first term in (18)] and the heat fluxes across

the sea surface in the boundary region [the second term

in (18)]. In other words, some of the inflowing heat is lost

to the atmosphere in the boundary current, some is

carried into the interior via eddies, and the remainder

exits the domain in the western outflow.

Both (16) and (18) are relevant regardless of the time

dependency of precipitation, while generally HFsurf 6¼
HFsill as in (17) when precipitation is time dependent. A

large difference betweenHFsurf andHFsill results in heat

storage in the interior.

Figures 3c and 3d show the time series of HFsurf (solid

curves) and HFsill (dashed curves) obtained from the DS

during the same time intervals as those of Figs. 3a and 3b,

respectively. The termHFsurf is out of phase withDT as is

defined by (16), while the HFsill phase is determined by

that of eddy heat fluxes [the first term in (18)]. The DLEs

indicate that the eddy heat flux term is characterized by

Dr, that is, the strength of baroclinicity. This prediction is

consistent with the fact that the phase difference of HFsill

from Dr is between about 20.1 and 20.7 for the cases

examined here, whose absolute values are one order of

magnitude smaller than 2p (the maximum difference).

FIG. 3. Time series ofDT (solid curves),DS (dashed curves), and g0(t) (dashed–dotted curves)
for (a) 20- and (b) 120-yr periodic precipitation, all of which are obtained from the DS.

(c),(d) As in (a) and (b), but for HFsurf (solid curves) and HFsill (dashed curves). The g0(t)
amplitude is equal to g0. The amplitude of DT 0 is multiplied by 4 in (a) and that of g0(t) is
multiplied by 2.5 in (a) and (b) for ease of comparison.
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TheHFsurf amplitude significantly increases as the period

is longer, while the HFsill amplitude increases only

slightly. The difference between HFsill and HFsurf is

proportional to the time derivative of TI as in (17). Thus,

Figs. 3c and 3d indicate that, when a period is short

enough (i.e., tT, tS� 1/v), most of the fluctuations in the

inflowing heat is used to change TI rather than being lost

to the atmosphere.

d. Response to sine function precipitation with
various g0 and m

We further examine the amplitudes of DT 0 and DS0

obtained from the DS as functions of the controlling

parameters. In this subsection, g0/� and m/� are varied,

while the frequency v of the precipitation is fixed.

Figure 4 shows normalized amplitudes of DT 0/DTave and

DS0/DSave with eitherv5 0.05 orv5 1, whereDTave and

DSave are time-averaged values over one period, andDT 0

and DS0 are deviations from those averaged values, re-

spectively. Here, Dg0 is g0/2, which means that the pre-

cipitation amplitude varies as g0 is changed. White

regions denote that a convective solution [or thermal-

mode solution, i.e., DT(t) . 2DS(t) for any t] does not

exist. Thick black curves denote the boundaries of ex-

istence of steady thermal-mode solution with steady

precipitation (see also Fig. 2 in Spall 2012). Note that

DSs 5 DTs/2 on the thick black curves (Spall 2012).

The boundaries of colored regions do not match the

thick black curves, which indicate hysteresis. Between

the thick black curves and the boundaries of colored

regions, steady thermal-mode solutions exist, while

time-dependent ones do not. It is important to note that

an increase in precipitation magnitude may change the

thermal-mode state [i.e.,DT(t). 2DS(t)] into the haline-
mode state [i.e., DS(t) . 0.5DT(t)]. The discordance

between the thick black curves and the boundaries of

colored regions means that a solution cannot get back to

the thermal-mode state once it moves to the haline-

mode state (i.e., hysteresis), even if the steady thermal-

mode solution exists. Note that the time-dependent

solution with DT(t) 5 2DS(t) does not exist for the DS

[(4) and (5)]. The boundaries of the colored regions are

closer to the thick black curves when v 5 1. This is be-

cause the interior cannot strongly respond to a change in

precipitation when the precipitation frequency is high

enough (i.e., v � 1/tT, 1/tS), as discussed in section 2b.

FIG. 4. Normalized amplitudes of DT 0/DTave and DS 0/DSave in the g0/�–m/� space with

(a),(b) v 5 0.05 and (c),(d) v 5 1, all of which are obtained from the DS with sine function

precipitation [g0(t) 5 Dg0 sin(vt)]. Here, DTave and DSave are time-averaged values over one

period, DT 0 and DS 0 are deviations from these averaged values, and Dg0 is g0/2. White regions

denote that a convective solution [i.e.,DT(t). 2DS(t) for any t] does not exist, while thick black
curves denote the boundaries of existence of steady thermal-mode solution (i.e., DTs . 2DSs)
with Dg0 5 0.
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In the low-frequency case (Figs. 4a,b), the state is al-

ways close to equilibrium. This means that the differ-

ence in the patterns of DT 0/DTave and DS0/DSave can be

understood by the DS with steady precipitation (Spall

2012); the amplitude of DS0 increases as the precipita-

tion magnitude (jg0j/�) is larger, while that of DT 0 is not
strongly dependent on the precipitation except for near

the thick black curve. The ratio jDT 0/DTavej is generally
much smaller than 1 except near the haline collapse.

In the high-frequency case (Figs. 4c,d), the pattern of

DT 0/DTave is similar to the low-frequency pattern, while

that of DS0/DSave is different. The DLEs are considered

to be valid when v 5 1 because the normalized am-

plitudes of deviations are small. In fact, the patterns

(Figs. 4c,d) are quite similar to those obtained by the

DLEs (not shown). Thus, the physical nature of the

patterns can be understood by the DLE solution.

The amplitudes of the DLE solution [i.e., the par-

ticular solution in (14) and (15)] can be further ap-

proximated in the following when v2(51) � 1/t2S and

1/tT ’ 2m/�:

Amplitude of
DT 0

DTs

’
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/t2S1v2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/t2T 1v2
q

;
jg0j/�

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2m/�)21 1

q , and (19)

Amplitude of
DS0

DSs
’

C

DSs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/t2S1v2

q ;
jg0j/�
8DSs

, (20)

where C [ 2Dg0/(4�) is equal to jg0j/(8�) under the

present setting. Note that DTave 5 DTs and DSave 5 DSs
for the DLE solution. The amplitude of DT 0/DTs is

larger as the precipitation amplitude (}jg0j) is larger

and/or the thermal relaxation characterized by 2m/� is

weaker, as seen in Fig. 4c. The amplitude of DS0/DSs
does not vary much with changes in jg0j/� when this

parameter is small as seen in Fig. 4d, because in this case

DSs is roughly proportional to jg0j/�. In contrast, the

amplitude ofDS0/DSs is smaller when the parameters are

close to the thick black curve because DSs increases

rapidly near there (see Fig. 2b in Spall 2012). The similar

feature is seen in Fig. 4d.

These results clarify that the pattern difference be-

tween Figs. 4b and 4d is due to the difference in the

strength of the response to precipitation. When the

frequency is low, DS0 has larger amplitude (i.e., the re-

sponse to precipitation is strong) and jg0j determines the

pattern as in Fig. 4b. In contrast, DS0 with high-

frequency forcing has smaller amplitude (i.e., the re-

sponse to precipitation is weak), and the pattern of

Fig. 4d is determined not by DS0(}jg0j) but by jg0j/DSs.

3. Comparisons with an eddy-resolving numerical
model

a. Model configuration

The DS has given the inherent time scales and the

evolution of temperature and salinity as well as aided in

the physical interpretation of the ocean response to

changes in precipitation. However, it is not clear

whether the DS prediction is valid because the DS is a

greatly simplified system using assumptions i–iv, and

these assumptions may not be well satisfied in a more

realistic model or the real ocean. Thus, it is desirable to

evaluate the basic predictions of the DS. In this section,

following Spall (2012), an eddy-resolving ocean circu-

lation model is configured in an idealized basin that is

subject to wind stress and heat and freshwater flux

forcing. Note that wind stress is included in the numer-

ical model, while it is not in the DS. An advantage of the

idealized configuration is that nondimensional parame-

ters such asm, �, and g0 are easily obtained, which makes

FIG. 5. Model domain, bottom topography (white contours; CI5
300m), wind stress (vectors, independent of longitudes), and at-

mospheric temperature toward which the model sea surface tem-

perature is restored (colors). Temperature is restored toward

a uniform stratification, and salinity is restored toward 35 ppt in the

region south of the bold dashed white line at 200 km latitude.

Precipitation is nonzero over the entire region north of the sill at

1200-km latitude. The region enclosed by the thick yellow curve is

the region over which temperature and salinity are respectively

averaged to obtain TI and SI.
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it easy to compare results to the DS predictions. If there

is a good agreement between them, the physical un-

derstanding obtained from the DS can be applied to the

more complex general circulation model that includes

such things as resolved mesoscale eddies, wind forcing,

and a barotropic mode.

The numerical model is the Massachusetts Institute

of Technology general circulation model (MITgcm;

Marshall et al. 1997). The model configuration is almost

the same as in Spall (2012) except for the addition

of a prescribed time-dependent precipitation north of

1200-km latitude (either a step function or a sine func-

tion in time). Figure 5 shows the model domain with

atmospheric temperature (colors) and wind stress (vec-

tors, independent of longitude). The model domain can

be divided into three regions: north of the sill at 1200-km

latitude is the idealizedmarginal sea; the region between

1200- and 200-km latitudes is regard as a subpolar gyre;

and south of 200-km latitude is regarded as the rest of

the World Ocean (Spall 2011).

For all calculations, the sill depth is 1000m, the at-

mospheric restoring strength G is 10Wm22 8C21, and

the basic precipitation E0 5 22 3 1028m s21 north of

1200-km latitude. Sensitivity of themean state to each of

these parameters is discussed by Spall (2012). Themodel

is started at a state of rest with an initial stratification of

N2 5 23 1026 s22 and upper-level temperature of 108C.
Note that the initial stratification does not affect the

statistically steady state, and the upper-level tempera-

ture of 108C provides T* that is roughly consistent with

that in the Nordic and Labrador Seas (Spall 2004, 2011,

2012). The model is run for a period of 24 yr, which is

sufficient to approach a statistically steady state (as in-

dicated by basin-integrated available potential energy or

kinetic energy and also diagnosed quantities such as DT
and DS). After the 24-yr spinup, the time-dependent

precipitation is added to the north of 1200-km latitude.

Figure 6 shows temperature, horizontal velocity, and

salinity at the sea surface at the end of year 24 (i.e., the

initial state). The cyclonic boundary current is observed

along the bottom topography; it flows northward along

the eastern boundary at low latitudes, crosses the sill at

the 1200-km latitude and continues flowing northward

along the eastern boundary. It is also found that eddies

are shed off from the boundary current. The tempera-

ture in the boundary current decreases along the

boundary pathway as a result of heat loss to the atmo-

sphere and eddy fluxes into the interior. The salinity also

decreases along the boundary due to precipitation and

eddy fluxes. The coldest and freshest waters are found in

the interior region: T ’ 6.88C and S ’ 34.8 ppt. The

water flowing southward along the western boundary

FIG. 6. The initial state obtained after the 24-yr spinup: (a) sea surface temperature (colors) and horizontal velocity

(vectors; every fourth grid point) and (b) sea surface salinity (colors). White contours are the bottom topography,

with CI of 300m.
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(TBout5 8.08Cand SBout5 34.9 ppt) is colder and fresher

than the northward-flowing water along the eastern

boundary (TBin 5 9.38C and SBin 5 35.0 ppt). The dy-

namics of the boundary current observed here is exam-

ined theoretically by Wahlin and Johnson (2009). These

basic features are consistent with the observed circula-

tion in the northern North Atlantic Ocean and Nordic

Seas (Spall 2011, 2012) and are observed even for the

strongest precipitation in the present paper (i.e.,

g0 5Dg0 sin(v+t+) with Dg0 5 g0 and v+ 5 2p/120 yr).

b. Step function precipitation

We first consider cases with step function in pre-

cipitation. As in the DS, DT[ (TBin 2TI)/T* and

DS [ (SBin 2 SI)aS/(aTT*), where T* 5 6.28C, aS 5
0.8 kgm23 8C21 and aT5 0.2 kgm23 8C21. Values of TI

and SI are the instantaneous temperature and salinity

spatially averaged over the region enclosed by the thick

yellow curve in Fig. 5 and down to the bottom, re-

spectively. Eastern and western parts of the curve are

located on the isobath with the sill depth, while its

northern part is not on the isobath to avoid containing

the boundary current near there. It is confirmed that the

following results are not overly sensitive to the choice of

the yellow curve in Fig. 5. The values ofTBin and SBin are

transport weighted inflowing temperature and salinity

along the eastern boundary at the 1200-km latitude,

respectively. Here, we use their initial values to obtain

DT and DS, as their standard deviations are smaller than

1% of the respective time-mean values due to the re-

storing in the southern region. The above definitions of

DT andDS from the numerical model data correspond to

those in the DS theory.

The model is run further for 100 yr with the additional

constant precipitation E0 north of 1200-km latitude

whose magnitude is either 60.4, 60.3, 60.2, or 60.1 3
E0 (i.e., nondimensional magnitude Dg0 of the step

function is either 60.4, 60.3, 60.2, or 60.1 3 g0).

Figure 7 shows the time series of DT and DS with

Dg0/g0 5 0.4 (solid curves and strong precipitation) and

Dg0/g0 5 20.4 (dashed curves, weak precipitation) as

typical examples. The DLEs give almost the same time

series as those from the DS. The DS and DLEs predict

the transitions to the new statistical equilibrium states

reasonably well, aside from small initial offsets that re-

flect errors in the steady theory.

Significant variability on 5–10-yr time scales is ob-

served in the time series of DT, while DS has similar

fluctuation with about one-third magnitude (Fig. 7). The

forcings are constant in time except for the initial step

function precipitation. This fact suggests that these

fluctuations are the natural variability inherent to the

eddy-resolving numerical model rather than the forced

variability. The DS with steady precipitation gives a

constant solution, which means that such variability is

not included in the DS theory. Physically, this is likely

FIG. 7. (a) Time series of DT obtained from the NM (thin curves), DS (thick black curves),

and DLEs (thick red curves) with the step function precipitation. (b) As in (a), but for DS. In
each figure, solid curves are for Dg0/g0 5 0.4 (strong precipitation), while dashed ones are for

Dg0/g0 5 20.4 (weak precipitation).
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because the parameterization of eddy fluxes is not

complete, and an influence due to the spatial variation in

the eddy field is not taken into account in the DS.

Small variations in the number of eddies formed or

present in the interior will change the spatially aver-

aged values of temperature and salinity (i.e., DT and

DS). It is expected that if the fluctuation results from

the variation in the number of eddies present in the

interior, the magnitude of the variation can be ap-

proximately estimated by the time-mean value of DT or

DS. This is because the temperature and salinity

transported by eddies can be estimated by the differ-

ences in temperature and salinity at the origin of

eddies, respectively (e.g., Visbeck et al. 1996; Spall and

Chapman 1998). Time-mean values of DT and DS over

the last 20 yr are used as the equilibrium values after

transition and designated as DTAT and DSAT, re-

spectively. Root-mean-square (RMS) values of varia-

tions in DT and DS over the last 20 yr are plotted against
DTAT and DSAT in Figs. 8a and 8b, respectively. The

RMS values of temperature are about 3 times as large

as those of salinity. This is reflected by the large fluc-

tuation in DT (Fig. 7). The line, obtained by the least

squares fit, gives the rough estimate of fluctuation

magnitude as a function of either DTAT or DSAT. The

fluctuation tends to be large as the mean value is larger,

consistent with the idea that it represents random

variation in the amount of boundary current water in

the interior. The closed circle with Dg0 5 0.4g0 is ex-

cluded to obtain the line in each figure. The large dif-

ference of the closed circle from the line may be

attributed to the weakest baroclinicity with the smallest

Dr (50.24), that is, the weakest eddy activity.

To simultaneously compare all the results, a transition

time is introduced as the minimum time such that jDS(t)2
DSATj/DS(0) , 0.1. Figures 9a–d show transition time,

DTAT, DSAT, and DrAT, respectively, where DrAT [
DTAT 2 DSAT. Note that precipitation strengthens at

the initial time when Dg0/g0 . 0. The solid curves are

obtained from theDS,while the dashed ones inFig. 9a are

from the DLEs. The DLEs give a reasonably good esti-

mate of transition time, although it is somewhat under-

estimated compared with the value from the DS. The

DLEs give the sameDTATandDSAT as those from theDS

because the basic steady state of the DLEs is the equi-

librium after transition.

The DS predicts the results from the numerical model

well, in particular, the asymmetry of transition time around

FIG. 8. (a) Scatterplot of RMS values ofDT variation againstDTAT, which is theDT averaged

over the last 20 yr for step function precipitation. (b) As in (a), but for DS. The line in each

figure is obtained by the least squares fitting for open circles, whose equation is shown in the

upper part.
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Dg0/g0 (Fig. 9a). Figures 9b–d indicate that the convective

water in the interior tends to be cold, fresh, and light, as

precipitation is stronger (i.e.,Dg0/Dg0 is larger). This result
is consistent with theDS theory and numerical simulations

with steady precipitation (Spall 2012). There are small

offsets in the magnitudes of DT,DS, and Dr resulting from
errors in the steady theory, although our primary interest

here is the general dependence of these quantities on the

parameter Dg0/g0.
The DLE [(9)] and its solution [(11)] suggest that the

transition time is characterized by the eddy flushing time

scale tS. As predicted from the DS with steady pre-

cipitation (Spall 2012), Drs is small when precipitation is

strong, meaning that tS (51/Drs) is large. Physically, the
transition is made by eddy fluxes, which are roughly

proportional to the density gradient between the interior

and the boundary current. When Dg0/g0 . 0, that is,

precipitation strengthens at the initial time, eddy fluxes

become weaker and it takes more time to make a tran-

sition, as seen in Fig. 9a. Figure 9d shows thatDr after the
transition actually tends to be small as Dg0/g0 is larger.

c. Sine function precipitation

Cases with sine function precipitation are examined in

this subsection. The model is run further for two periods

with precipitation E0 5DE0 sin(v+t+) north of 1200-km

latitude. Amplitudes and periods used in the present

paper are shown in Table 2, in which nondimensional

numbers Dg0 and g0 correspond to DE0 and E0, re-

spectively. Simulations with doubled horizontal resolu-

tion are also performed (runs 19–27) to validate the

lower-resolution results.

Figure 10 shows the time series of DT, DS, and g0 for
20- and 120-yr periodic precipitation whose amplitudes

are g0 as typical examples. The time series from the DS

and the DLEs include the initial adjustments, unlike

Fig. 3, which are well described by the DLE general

solutions (14) and (15). The DLEs give almost the same

time series as those from the DS for the 20-yr periodic

precipitation (Fig. 10a). Even in the 120-yr period case

(Fig. 10b), the DLEs give similar curves, although the

maxima are underestimated. This underestimation is

likely attributed to an overestimation of Dr0 due to the

lack of nonlinearity in theDLEs. This overestimatedDr0

makes the eddy flux terms larger, which reduce DT 0 and
DS0. The amplitude of eddy heat fluxes is actually

overestimated by the DLEs as discussed in the next

subsection, while similar overestimation is observed in

the eddy salinity fluxes (not shown).

Next, we compare the time series from the DS with

those from the numerical model. The DS predicts

DS for the 20- and 120-yr periodic precipitation well

(Figs. 10a,b), although the amplitudes are overestimated.

The term DT is also predicted well in the 120-yr period

FIG. 9. Scatterplots of (a) transition time, (b) DT, (c) DS, and (d) Dr against the normalized

magnitude Dg0/g0 of the step function precipitation, all of which are obtained from the nu-

merical model. All solid curves are obtained from theDS, while dashed ones in (a) are from the

DLEs. The terms DT, DS, and Dr are the values averaged over the last 20 yr.
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case (Fig. 10b), although the amplitude is again over-

estimated, and the phase is slightly different. The over-

estimation of amplitude by the DS may be attributed

to errors in Dr, which are affected by the vertical strat-

ification in the model, while the vertically uniform

structure of the interior is assumed in the DS theory

(assumption iv). The DS fails to describe the time series

of DT with the 20-yr periodic precipitation (Fig. 10a).

The 20-yr periodic component is not dominant in DT
from the numerical model, and the time series are sen-

sitive to the model resolution. Similar results are ob-

tained for DT in most cases with 10- or 20-yr periodic

precipitation. This is likely because the amplitude of the

oscillation forced by the precipitation is smaller than the

natural variability inherent in the numerical model, as

discussed in section 3b. The magnitudes of natural var-

iability can be estimated by the lines in Fig. 8. In the

20-yr period case, the magnitude of fluctuation in DT is

the same order of magnitude as the predicted amplitude

of DT 0 by the DS, while for DS the magnitude of fluc-

tuation is an order of magnitude less.

These basic behaviors of DT and DS are also found for

longer model runs (not shown) and for runs with dou-

bled resolution. The term DT from the numerical model

with 10- or 20-yr periodic precipitation is not analyzed

further because the signal predicted by the DS is not

larger than the inherent variability in the model. On the

other hand, DS has weak inherent fluctuation and is

analyzed for all cases.

To evaluate the basic parameter dependency predicted

by the DS, the amplitude and phase of DT are obtained

after detrending and filtering out high-frequency compo-

nents: DT amplitude is the difference between max DT
and min DT divided by 2, and its phase is the time, when

DT first takes a local maximum, divided by the pre-

cipitation period. The amplitude and phase of DS are also

obtained in the same way. Figure 11 shows the compari-

sons in amplitude and phase between the numerical model

(NM) and theDS. The ratios of the values by theDS to the

ones by themodel are between 0.9 and 1.8 in Figs. 11b and

11d and between 0.5 and 2.5 in Figs. 11a and 11c except for

the closed gray circle (ratio is 3.9) in Fig. 11c, which is

excluded to obtain the line by least squares fit because of

the exceptionally large ratio. Although the line slopes are

not equal to one, they are O(1), which provides general

support for the scaling approach taken here. A few gray

circles, including the closed one, with Dg0/g05 1/8 (i.e., the

smallest amplitude of precipitation) are not close to the

lines in Figs. 11c and 11d. This is likely due to the small

amplitude of the forced component and the relatively large

background fluctuation.

The DT and DS amplitudes tend to be large as the pre-

cipitation period or amplitude is larger (Figs. 11a,b). This

result is consistent with the prediction in sections 2b and 2c

that the response to changes in precipitation is stronger as

the precipitation period or amplitude is larger. TheDT and

DS phases tend to be small as the precipitation period is

longer, while they are not strongly dependent on the pre-

cipitation amplitude (Figs. 11c,d). This result is also con-

sistent with the prediction in sections 2b and 2c that the

interior approaches a quasi-steady state as the pre-

cipitation period is longer, in which the interior is the

freshest and coldest when precipitation is the strongest,

while the response of the interior lags as the precipitation

period is shorter.

It is worthwhile to compare the results with those from

observational studies. The real ocean is affected by

variability in the atmosphere through heat and fresh-

water fluxes and wind stress. It may be difficult to dis-

tinguish signals forced only by freshwater fluxes from

observational data. The DS theory suggests that the

relaxation time scales for temperature and salinity are

determined by the time-mean state and are not largely

affected by variability in the atmosphere. Thus, we

TABLE 2. Summary of model runs with sine function precipita-

tion. The ratio of sine function amplitude to the constant pre-

cipitation is designated as Dg0/g0 using nondimensional numbers.

The color indicated in the far-right column is the one used in the

scatterplots (Figs. 11, 13).

Run Dg0/g0
Period

(yr)

Horizontal

resolution (km) Color

1 1/8 10 10 Gray

2 1/8 20 10 Gray

3 1/8 40 10 Gray

4 1/8 60 10 Gray

5 1/8 80 10 Gray

6 1/8 120 10 Gray

7 1/2 10 10 Red

8 1/2 20 10 Red

9 1/2 40 10 Red

10 1/2 60 10 Red

11 1/2 80 10 Red

12 1/2 120 10 Red

13 1 10 10 Black

14 1 20 10 Black

15 1 40 10 Black

16 1 60 10 Black

17 1 80 10 Black

18 1 120 10 Black

19 1/8 80 5 Magenta

20 1/2 10 5 Blue

21 1/2 20 5 Blue

22 1/2 80 5 Blue

23 1 10 5 Green

24 1 20 5 Green

25 1 80 5 Green

26 20.5 10 5 Cyan

27 20.5 20 5 Cyan
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compare the relaxation time scales with those suggested

by observational studies. Van Aken et al. (2011) com-

pared the time series of temperature (and potential

temperature) at intermediate depths in the central

Labrador Sea from the hydrographic data with those of

surface heat fluxes estimated from the NCEP–NCAR

reanalysis data between 1950 and 2010 (see Figs. 5 and

11 in their paper). They argued that the lowest temper-

ature in the 50-yr harmonic fit lags 6 yr behind the max-

imum of heat fluxes. This time scale is between the two

relaxation time scales tT [5O(5) yr] and tS [5O(10) yr],

suggesting that our theoretical prediction on time scales is

consistent with their results.

Observations in the Labrador Sea during the period of

1969 to 1972may also be appropriate for the comparison

here because anomalous freshwater input was consid-

ered to have caused a shutdown of deep convection.

Straneo (2006) showed a good agreement between the

time series of dense-layer thickness from her theory and

that from the data at the Ocean Weather Station Bravo

during that period. Her theory indicates that the flushing

time scale, which is the same as tS, is the time scale for

dense-layer thickness. This suggests that tS is a relevant

time scale of ocean response to changes in precipitation.

The results from the numerical model with both step

function and sine function precipitation support the

qualitative validity of the DS. Thus, it is possible to use

the DS to derive a basic understanding of the physics

that controls the ocean response to changes in pre-

cipitation and its dependence on parameters such as

precipitation magnitude and period.

d. Heat fluxes with sine function precipitation

The terms HFsurf and HFsill are compared when pre-

cipitation is a sine function, and the physical understanding

of the heat budget obtained from theDS is tested. Figure 12

shows the time series ofHFsurf, HFsill, and g
0 obtained from

the DS, DLEs, and numerical model for the 20- and 120-yr

periodic precipitation. The DLEs give almost the same

time series as those from the DS for the 20-yr periodic

precipitation (Fig. 12a). In contrast, in the 120-yr period

case (Fig. 12b), the minima of HFsurf and HFsill are

larger in the DLEs than in the DS. This result means

that the eddy heat flux term [the first term in (18)] is

overestimated by the DLEs. This overestimation is

reflected in the underestimation of DT 0 by the DLEs

compared with that by the DS (Fig. 10b).

Next, we compare the time series from the DS with

those from the numerical model. In the 20-yr period case

(Fig. 12a), the DS fails to predict the time series by the

numerical model, since the 20-yr periodic component is

not dominant in HFsurf and HFsill from the model. The

FIG. 10. (a) Time series of (top) DT, (middle) DS, and (bottom) g0 for the 20-yr periodic

precipitation whose nondimensionalized amplitude is g0. Thin solid curves are obtained from

the NM and thick solid ones are their low-frequency components. Black dashed curves are

obtained from the DS, while red ones are from the DLEs. The g0 amplitude is normalized to

unity. (b) As in (a), but for the 120-yr periodic precipitation.
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fluctuation in HFsurf is likely due to the inherent vari-

ability in the model that was discussed in sections 3b and

3c. On the other hand, individual warm and cold water

events crossing the sill likely make the strong high-

frequency fluctuation in HFsill. These events include

large-scale meanders or bursts of anomalous water from

the boundary current near the sill, which are not taken into

account in the DS theory. In the 120-yr periodic case

(Fig. 12b), the time series of HFsurf and HFsill from the DS

get closer to those from the numerical model, although

there are still discrepancies between them.

As for DT, the internal fluctuations of HFsurf and HFsill

are dominant over the oscillations forced by precipitation

with the 10- or 20-yr period, and the time series from the

numerical model depend on the resolution. This suggests

that small-scale motions are important for these short-

periodic cases, which are not taken into account in theDS.

Thus, it is beyond the scope of this paper to examine the

short-periodic (10 or 20yr) cases. In addition, Gulev et al.

(2013) argued on the basis of the analyses of the obser-

vational data that short time scale (#10yr) components of

surface heat flux over theNorthAtlanticOcean aremainly

controlled by the atmosphere, which are highly fluctuated,

while the longer ones are by the ocean. Thus, it is suggested

that the short-periodic (10 or 20yr) components shown

above will be modified more strongly than long-periodic

ones by the atmospheric variability in a coupled ocean–

atmosphere system.

Figure 13 shows the amplitudes and phases of HFsurf

and HFsill obtained as those of DT and DS. The DS

predicts the qualitative parameter dependences in the

numerical model and once again the line slopes are

O(1). The scatterplots of HFsurf amplitude and phase

(Figs. 13a,c) are similar to those of DT amplitude and

phase (Figs. 11a,c), respectively. This is likely because

HFsurf is determined by the sea surface temperature in

the numerical model, while it is given by DT in the DS as

seen in (16). The DS does not well predict the tendency

of HFsill amplitudes in the model (Fig. 13b), especially

when precipitation is the strongest (Dg0 5 g0, denoted by

the black circles); the HFsill amplitude in the model

tends to be large as the precipitation period is longer,

unlike for that in the DS. This is possibly due to the

strong high-frequency fluctuation in HFsill (Fig. 12b).

FIG. 11. Comparisons of (a) DT amplitude, (b) DS amplitude, (c) DT phase, and (d) DS phase

from the NM with those from the DS for sine function precipitation. A circle in each figure is

larger as a precipitation period is longer. Colors used in each figure are denoted in Table 2. The

line in each figure is obtained by the least squares fitting. A closed gray circle in (c) is excluded

to obtain the line. A value for the 10- or 20-yr periodic precipitation is not shown in (a) and (c).

Error bars in (a) and (b) are obtained by substituting the mean values of DT and DS into the

equations of the lines in Figs. 8a and 8b, respectively. Here, the mean value is the sum of the

time-averaged value and the amplitude of oscillation multiplied by 1/
ffiffiffi
2

p
. Note that the axis

ranges in (c) are the same as in (d).
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The HFsill phases are smaller than those of HFsurf in all

cases (Figs. 13c,d), where the averaged differences are

about 0.1 in themodel and 0.2 in theDS. This fact means

that HFsurf is maximal after the HFsill maximum, as

predicted by the DS in section 2c.

The difference between HFsill and HFsurf changes the

temperature in the interior [see (17)]. A large difference

between them indicates that much of the inflowing heat is

used to change the temperature of the convective water

rather than being lost to the atmosphere. According to the

DS prediction, this difference is large as a precipitation

period is shorter. Amplitudes of HFsill 2 HFsurf from the

numerical model, normalized by the respective HFsill
amplitudes, are plotted against precipitation periods in

Fig. 13e. In all cases, the normalized amplitude of HFsill 2
HFsurf tends to increase as the period decreases, meaning

that the fraction of heat lost to the atmosphere decreases.

Thus, although there is a lot of scatter in the data, the

numerical simulations support the DS prediction that, as a

precipitation period decreases, more of the heat flowing

into the basin is used to change the temperature of the

convective water rather than being lost to the atmosphere.

This result suggests that a temporal and rapid change in

freshwater input (possibly including sea ice melt and river

inflow) does not largely affect the heat flux to the

atmosphere, even if the change in precipitation is large. To

make a precise estimate of the effect on the atmosphere,

the relation between the precipitation time scale and the

two relaxation time scales (tT and tS) needs to be exam-

ined for each particular case.

4. Summary

In the present paper, we extended the dynamical system

(DS) proposed by Spall (2012) to cases with time-

dependent precipitation. The DS predicts the differences

in temperature and salinity between the interior and the

boundary current in the idealized marginal sea (Fig. 1).

There are three inherent time scales derived from the DS:

relaxation time scales for temperature and salinity and a

precipitation time scale. The relaxation time scales are

given by a steady solution of the DS with steady pre-

cipitation. The relaxation time scale for temperature tT is

always smaller than that for salinity tS as in Wahlin and

Johnson (2009). It is shown here that this time scale dif-

ference is due to not only the difference in the form of

fluxes at the sea surface but also due to the variation in the

eddy transport characterized by the density gradient. For

marginal seas of the North Atlantic, such as the Labrador

Sea and the Nordic Seas, tT is estimated to be about 5yr

FIG. 12. (a) Time series of (top)HFsurf, (middle) HFsill, and (bottom) g0 for the 20-yr periodic
precipitation whose nondimensionalized amplitude is g0. (b) As in (a), but for the 120-yr pe-

riodic precipitation. Thin solid curves are obtained from the NM, and thick solid ones are their

low-frequency components. Black dashed curves are obtained from the DS, while red ones are

from the DLEs. The thin solid curves of HFsill are obtained by removing components with

frequencies higher than 2p/(1 yr) in (a) and 2p/(3 yr) in (b), while such filters are not used for

the thin solid curves of HFsurf. The g0 amplitude is normalized to unity.
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while tS is about 10yr. These three time scales together

with the precipitation amplitude characterize the DS so-

lution. Because of the coupling between the temperature

and salinity equations that results from the baroclinic eddy

fluxes (or the variation in the eddy transport), changes in

precipitation change not only the salinity of the convective

water but also its temperature and heat fluxes. For a pre-

cipitation period shorter than the relaxation time scales, the

ocean response is relatively weak and one-dimensional,

especially for temperature. As the period of precipitation

increases, the ocean response becomes strong, while in

nondimensional terms the salinity response is generally

greater than the temperature response. It was demon-

strated that the DS predicts the results from the numer-

ical model qualitatively well over a range of precipitation

frequencies and amplitudes, except for temperature in

the limit of high-frequency precipitation for which the

natural internal variability of the system is larger than the

predicted weak-forced response.

Although the numerical model is very idealized, and the

DS even more so, the framework provided here may be

useful to help distinguish between natural internal vari-

ability in the properties of convective water masses and

variability that may be forced by low-frequency changes in

precipitation. In addition to the predictions of the changes

in the temperature and salinity of convectivewatermasses,

theDS theory provides the phase relationship between the

precipitation, changes in salinity and temperature (which

are different), and the changes in heat fluxes both into the

basin and into the atmosphere. These phase relationships

depend strongly on whether a precipitation period is long

or short compared to the relaxation time scales. Because

the system is time dependent, all of the changes in the

meridional heat flux in the ocean are not transmitted to the

atmosphere. For high-frequency forcing (roughly decadal

periods or less), most of the changes in themeridional heat

flux remain as storage in the deep convective region rather

than being lost to the atmosphere.

FIG. 13. Comparisons of (a) HFsurf amplitude, (b) HFsill amplitude, (c) HFsurf phase, and (d) HFsill phase from the

NM with those from the DS for sine function precipitation. The line in each figure is obtained by the least squares

fitting. Note that the axis ranges in (c) are the same as in (d). (e) Amplitudes of HFsill 2HFsurf from the numerical

model, normalized by respective HFsill amplitudes, are plotted against precipitation periods. A circle in each figure

is larger as a precipitation period is longer. Colors used in each figure are denoted in Table 2. A value for the 10- or

20-yr periodic precipitation is not shown in each figure.
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