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ABSTRACT

Recent developments of ideal-fluid thermocline models are briefly reviewed. Using density coordinates,
boundary value problems are formulated for the ideal-fluid thermocline with continuous stratification. Ekman
pumping and surface density are specified as the upper boundary conditions, No flow is permitted through the
ocean’s eastern boundary nor its bottom. Each water column is divided into three parts, i.e., the stagnant abyssal
water with specified stratification, the unventilated thermocline with its potential vorticity specified, and the
ventilated thermocline with its potential vorticity determined by a global dynamic balance. The unventilated
thermocline is further divided into the shallow and deep parts, potential vorticity is specified a priori for the
latter; however, for the former, potential vorticity has to be chosen in the process of calculating the solution so
as to make the solution self-consistent.

Numerical integration of the ideal-fluid thermocline equations is reduced to repeatedly integrating a second-
order ordinary differential equation at each station. This integration process reveals the nonlinear interaction
between the ventilated and unventilated thermocline and sheds light on the long-pursued question of how the
potential vorticity field is determined in the ventilated thermocline of a continuously stratified ocean. A numerical
example shows the three-dimensional circulation pattern of a wind-driven ocean interior with continuous stra-
tification, including a subtropical gyre and a subpolar gyre.

The novel contributions in this study are formulating the suitable boundary value problems of the continuously
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stratified thermocline equations and solving these problems numerically.

1. Introduction

A primary goal of large-scale ocean circulation the-
ory has been to understand the thermocline structure.
There has been a lengthy debate over the role and rel-
ative importance of advection and diffusion in deter-
mining the thermocline structure in the open ocean.
In particular, the analyses of Welander (1959) and
Robinson and Stommel (1959) represented two differ-
ent idealizations. Welander emphasized the importance
of density advection but ignored diffusion. Robinson
and Stommel emphasized vertical diffusion but only
took part of the convection into account.

There is no question about the vital importance of
mixing/friction in the dynamics of the general circu-
lation within a closed basin. However, Welander pro-
posed an idealized ocean model in which all these mix-
ing/friction processes were concentrated within the
mixed layer on the top, and the western boundary re-
gion and the interior flow was free of mixing/friction.
Accordingly, the ideal-fluid theory was applied for cal-
culating the lowest-order interior solution with the
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mixing/friction processes left as higher-order dynamics
to be matched on the boundaries. After calculating the
lowest-order interior solution, the real oceanic circu-
lation could be seen much more clearly as the wave/
turbulence processes are superimposed on this basic
flow.

For a long time Welander’s approach has been much
favored among theoretical modelers due to its sim-
plicity. The corresponding theory is called the ideal-
fluid thermocline and the governing equation is called
the ideal-fluid thermocline equation. The ideal-fluid
thermocline equation can be written in the form of a
first-order partial differential equation system or a sin-
gle third-order partial differential equation (the M-
equation, Welander, 1959). Although the ideal-fluid
thermocline equation has a seemingly simple form, it
is a highly nonlinear system of a special type. Huang
(1984, 1986, HH hereafter) made a preliminary study
of this system and classified it as a non-strict hyperbolic
system. In fact, the characteristics of the ideal-fluid
thermocline equation satisfy

&, (ud, + v®, + wd,) = 0,

where ®(x, v, z) is the characteristic manifold, (u, v,
w) are velocity components on the (x, y, z) coordinates.
The first factor means z = constant is a triple charac-
teristic surface. The second factor means a streamline
is a characteristic. Therefore, this system is a highly
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degenerated hyperbolic system. The mathematical
properties of this system are still largely unknown, and
no well-posed boundary value problem of the ideal-
fluid thermocline equation in a closed basin has been
discussed before.

In spite of the mathematical difficulties, theoretical
models guided by physical intuition have yielded much
information about the nonlinear dynamics. Many of
the theoretical models developed in the 1960s feature
similarity solutions. The limitations of similarity so-
lutions have long been recognized (e.g., see Veronis,
1969). After a period of relatively low activity in the
1970s, theoretical models aimed at nonsimilarity so-
lutions became popular.

Rhines and Young (1982, RY hereafter) showed how
the potential vorticity field could be determined within
closed streamlines in the unventilated thermocline.
Their approach combined the ideal-fluid motion with
an infinitesimal mixing by eddies and gave a unique
solution with potential vorticity homogenized. Luyten
et al. (1983, LPS hereafter) applied the idea of purely
density convection to a layered model and successfully
overcame the original difficulty of determining the po-
tential vorticity functional in Welander’s (1971) model.
In a layered discretization, the complicated partial dif-
ferential equations became a set of algebraic equations.
Therefore, the model provides a straightforward,
though perhaps tedious (if the number of layers is large),
solution for the ventilated thermocline. Pedlosky and
Young (1983, PY hereafter) combined these two ap-
proaches into a model of semi-continuous stratifica-
tion. Despite much effort to formulate a model of truly
continuous stratification, no clear-cut solution has been
reported.

Huang (1984, 1986) patched together different forms
of potential vorticity and reproduced a three-dimen-
sional structure with continuous stratification similar
to observations. The model is only a diagnostic model
since potential vorticity is specified a priori. Although
the upper and lower density conditions and Ekman
pumping condition are satisfied, the model can satisfy
the no-flow lower boundary condition only in an
asymptotical sense, i.e., by adjusting many parameters.

Several new similarity solutions have been published
recently. Janowitz (1986) and Killworth (1987) showed
some exact, closed-form analytical solutions in simi-
larity form. Young and Ierley (1986) discussed the no-
flux boundary condition at the eastern wall by using a
new family of similarity solutions. Although these new
solutions are much better than the previous ones, there
is always the same old question: Can these solutions
satisfy these general boundary conditions.

The answer seems definitely negative. A similarity
solution is useful when there is no natural length scale
in the problem. For a closed basin many boundary
conditions applied to the model imply many intrinsic
length scales. By assuming a specific form of similarity,
there is a special constraint over the solution and it
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will not be a general solution which can satisfy the
most general boundary conditions.

The eastern boundary condition has been a topic of
discussion. Both Young and lerley (1986) and Kill-
worth (1987) used a no-flux condition at the eastern
boundary. The same boundary condition is used in the
present model. As will be shown later, however, this
kind of eastern boundary condition is associated with
some intrinsic singularity.

Young and lerley also tried to emphasize the so-
called “weak” solution for the ideal-fluid thermocline
equation. They considered a discontinuity in density
as weak solutions. It seems useful to distinguish these
weak solutions and the weak solutions with which we
are familiar from some well-known totally hyperbolic
systems. There are examples in two-dimensional gas
dynamics in which a weak discontinuity develops from
a totally continuous upstream boundary condition
(Courant and Friedrichs, 1948). The examples Young
and lerley used for interior density discontinuity were
from LPS and PY. However, the density discontinuity
in these two cases can be traced back to the western
boundary or upper boundary; they were not created
along the streamlines. _

Although all these solutions with density disconti-
nuity are perfectly legitimate solutions for the ideal-
fluid thermocline equation, it does not mean there can
be no solution with truly continuous stratification in
the interior ocean.

There has been also some argument whether a level
of no motion can exist in an ideal-fluid (Olbers and
Willebrand, 1984). At that time it was unclear what
the correct lower boundary conditions were for the
ideal-fluid thermocline equation.

In fact, within the past 30 years, since the ideal-fluid
thermocline was formulated, it was unclear how to for-
mulate appropriate boundary value problems for the
ideal-fluid thermocline equation. Welander (1971)
pointed out that potential vorticity and the Bernoulli

- function are conserved along a streamline. He suggested

the choice of some form of potential vorticity function,
thus turning the original partial differential equation
into a second-order ordinary differential equation. The
major conceptual difficulty was that a second-order or-
dinary differential equation can only satisfy two
boundary conditions. Thus, it was obscure how this
process can lead to a solution that satisfies many
boundary conditions. HH went one step further by
constructing solutions which can satisfy three vertical
boundary conditions and some lateral boundary con-
ditions. However, complete formulations of boundary
value problems are still lacking.

To answer all these questions, we need a solution
for the ideal-fluid thermocline with continuous stra-
tification. Continuous density boundary conditions will
apply to all boundaries and thus eliminate the possi-
bility of a density jump being advected into the interior.
Our model will parallel the LPS and PY models. In
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fact, we will formulate boundary value problems in
density coordinates including LPS and PY models as
special cases. By constructing continuous solutions, we
prove the existence of continuously stratified solutions
and the surface of no motion, a surface which separates
the moving water from the stagnant abyssal water. In
a sense, our model is a computer extension of the LPS
model. However, instead of doing all these hard alge-
braic manipulations of layered models by human brain,
we use finite difference in density coordinates and our
modern slave, a PC, to do the job for us.

Section 2 is devoted to the description of the model.
First, we classify four types of water in the model, i.e.,
the stagnant abyssal water, the deep unventilated ther-
mocline, the shallow unventilated thermocline, and the
ventilated thermocline. Second, we discuss the venti-
lation ratio and estimate how much water is really ven-
tilated by Ekman pumping. Third, the basic equations
and the corresponding boundary conditions are trans-
formed into density coordinates. Several boundary
value problems of the ideal-fluid thermocline equation
are formulated in section 3. In these formulations, the
problem of solving the ideal-fluid thermocline equation
is reduced to repeatedly solving free boundary value
problems of a second-order ordinary differential equa-
tion in the density coordinate. These free boundary
value problems turn into simpler fixed boundary value
problems or even closed analytical solutions when the
deep unventilated thermocline has a constant potential
vorticity as will be shown in section 4. A numerical
example of a two-gyre circulation is presented in section
5 with some interesting maps. In general cases, the
upper surface density is a function of x and y coordi-

o
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nates, and there can be weak flux across the eastern
boundary. Boundary value problems formulated for
these cases are discussed in section 6. Finally, we con-
clude in section 7 with topics for further study.

2. Description of the model

A continuously stratified ocean is confined within a
rectangular basin on a (-plane. The upper surface of
the model ocean is located at the bottom of an Ekman
layer where water is pumped down into (or up from)
the interior ocean. The ocean has a flat bottom with
no topography. The northern, southern, and the in-
tergyre boundaries of the basin are latitude circles (y
= Yu, ¥ = ¥s, ¥ = Yo), which are coincident with the
zero-Ekman-pumping lines. A further assumption of
no-water-mass-exchange across these latitudes is made
in the model. This assumption is a choice of simplifi-
cation rather than necessity; it is also a choice consistent
with these boundary conditions (see HH). For sim-
plicity, the density at the base of the mixed layer is
assumed to be x-independent in the subtropical gyre.
Figure 1 shows a schematic picture of the subtropical
basin.

The eastern boundary of the ideal-fluid thermocline
is connected with some kind of singularity and the cor-
responding boundary conditions can be either with flux
or without. A no-flux condition is much easier to han-
dle in a simple theoretical model, and it is the choice
magde in this study. It is readily shown that with such
an eastern boundary condition the surface line along
the eastérn wall is a singular line where all isopycnals
in the ventilated thermocline outcrop and meridional

FIG. 1. Schematic picture of a subtropical basin. At the intergyre boundary y = y;, w, = 0 and
ps = po. At section' v, the stratification of the ocean is depicted: the ventilated thermocline with
p < po, the unventilated thermocline with p > po, and the stagnant abyssal water (shadow zone)

adjacent to the eastern boundary.
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velocity is unbounded (e.g., Young and Ierley, 1986).
Nevertheless, it is readily seen that the vertically inte-
grated meridional mass flux remains finite (equal to
the Sverdrup flux). Boundary value problems with a
general eastern boundary condition will be discussed
in section 6.

a. Ventilated and unventilated thermoclines

In the early stages of thermocline theory, most theo-
retical models were similarity solutions, which made
no distinction between different types of water in the
circulation. During the past five years, it has become
very clear that the thermocline consists of several do-
mains that are quite different in their dynamic nature.
Accordingly, each water column in a subtropical gyre
can be divided into three parts vertically: 1) on the top,
the ventilated thermocline—water comes from Ekman
pumping over the upper surface; 2) in the middle depth,
the unventilated thermocline—water comes from the
western boundary outflow or northern/southern
boundary; since a no-flux assumption has been applied
to the northern, southern and intergyre boundaries in
" the model, outflow from the western boundary is the
sole source of water in the unventilated thermocline;
by definition, the unventilated thermocline has no
contact with the Ekman layer within the subtropical
gyre interior; 3) on the bottom, the abyssal water, which
is assumed to be stagnant in the model.

Ventilated and unventilated thermoclines have quite
different sources and thus drastically different natures.
However, within the context of a layered model it is
not always clear whether a water parcel should be clas-
sified as ventilated or unventilated. For a steady, con-
tinuously stratified model, it is crucial to make the dis-
tinction between the two types of water. All water
coming from the western boundary (below the upper
surface!) belongs to the unventilated thermocline, while
the ventilated thermocline is strictly limited to the water
which comes directly from Ekman pumping specified
over the upper surface.

Accordingly, all moving water in a subpolar gyre
interior belongs to the unventilated thermocline, Al-
though the upper part of a water column can reach the
base of the mixed layer, these water parcels do come
from the western boundary outflow, thus they belong
to the unventilated thermocline.

Since we assume that the upper surface density dis-
tribution in the subtropical basin is independent of x
and increases northward, therefore, it is obvious that
water having density larger than pg (the surface density
at the intergyre boundary) must be in the unventilated
thermocline. At first, this p = po isopycnal interface
seems an appropriate interface between the ventilated
and unventilated thermocline. A close examination,
however, reveals that even within the density range p
< po there may be a substantial portion of water that
comes from the western boundary and thus belongs to
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the unventilated thermocline (see HH and Rhines,
1986). Figure 2 depicts the relative contribution of the
unventilated thermocline on two isopycnal surfaces.
Figure 2a shows a warm isopycnal surface on which
the shaded area represents the unventilated thermocline
which is less important here. This area was called a
“pool” in the LPS model. It should be noticed that
water in the top part of a column in this area is ven-
tilated; therefore, resolving the interaction between the
ventilated and the unventilated thermoclines in this
area becomes crucially important in a continuous
model. As an example, Fig. 2b shows the streamline
pattern on an isopycnal surface close to pg. The un-
ventilated portion (or the pool area in LPS’s termi-
nology) occupies a major portion of the circulation.
Obviously, as p increases toward po, all water must
come from the western boundary outflow and belong
to the unventilated thermocline.

It is clear from Fig. 2b that ignoring this pool area
will leave a major portion of a subtropical gyre unre-
solved. As the number of layers in a model increases,
resolving the dynamics of this pool becomes an essen-
tial requirement for the global structure. For a contin-
uous model, therefore, specifying some additional in-
formation is an essential boundary condition along the
western boundary. HH discussed the mathematical
properties of the ideal-fluid thermocline equation and
argued that information was needed wherever fluid
came into the domain of the study. In the present
model, there are only two boundaries through which
water can come into the domain of study. First, water
comes from the upper surface where both density and
vertical velocity (Ekman pumping velocity) have been
specified. Second, water comes from the western
boundary. It is our major assumption in the model
that, in addition to the density, some additional infor-
mation has to be specified for these water particles. We
propose to specify the functional form of potential vor-
ticity in connection with density and the Bernoulli
function. This is an extension from the combined
model by PY. It is still unclear now whether some
other information can be used instead of the potential

s
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FIG. 2. Schematic streamline pattern on two isopycnal surfaces
showing thé boundary between the ventilated thermocline and the
shallow unventilated thermocline (pool region).
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vorticity function. Nevertheless, the requirement of
specifying information in addition to the density is an
essential boundary condition.

As one moves southward, this pool region gradually
shrinks and eventually disappears. This difference in
specifying boundary conditions for the northern and
southern parts of the western boundary is a result of
the mathematical properties of the so-called nonstrict
hyperbolic system (HH).

In the following analysis an unventilated thermocline
with density smaller than py will be called the shallow
unventilated thermocline, while that with density larger
than po will be called the deep unventilated thermo-
cline. The potential vorticity functions for these two
parts of the thermocline can be chosen differently be-
cause these functions can be piecewise continuous
anyway.

b. The ventilation ratio

Rhines (1986) introduced a recirculation index,
which actually indicated the ratio between the venti-
lated and unventilated thermocline. His estimation was
based on a simple analysis of a meridional section.
This ratio is meaningless for a subpolar gyre, thus our
attention here is focused on a subtropical gyre. Since
the overall importance is that of distinguishing the
ventilated thermocline from the unventilated one, it
seems worthwhile to calculate the exact ratio of the
two types of water.

The wind forcing is assumed to be purely zonal, thus
the volume flux in the Ekman layer is purely meridi-
onal. The corresponding Ekman fluxes entering from
the northern and southern boundaries of a subtropical

gyre are
Mgo = L(7/f)y=y/p .1

MEx = _L(T/f)y=y,/p (22)

where 7 is the wind stress, f'is the Coriolis parameter,
Yo and y, are the northern and southern boundaries,
and L is the west—east extent of the basin. The total
meridional volume flux, below the Ekman layer, is

My = fw.L/B = —(fL/pB)d(z/[f)/dy. (2.3)
Assume the wind stress takes the form
7 = (1o f(Wfm) cos[m(y — y)/(yo — y9] (2.4)

where f,, = f(yn) and y,,, = (3s + 30)/2 is the midlatitude
of the basin. The interior meridional volume flux
reaches a maximum, M, ,,, (absolute value) at y = y,,
where the wind stress is zero and the Ekman flux is
also zero. Therefore, the total volume flux crossing the
western boundary south of y = y,,, is the sum of | Ming |
and Mg, i.e.,

Mw = —Mnt,lysym + MEs

=1oL/p:[Ufm + «/B(yo — ¥,  (2.5)
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while the total volume flux of the ventilated thermo-
cline water (equal to the total volume flux of Ekman
flux entering the region) is

Mg =270L/pfm- (2.6)
We define the ventilation ratio as
- Volume flux in ventilated therm?cline @7
Total volume flux in thermocline
Therefore, we have
Re = 2[nfulB(yo — v + 117 (2.8)

For a typical subtropical gyre, f,, = 8.37 X 107357, 8
=1.875 X 1072 s ' em™!, y — y; = 2 X 10® ¢m, thus
R, = 1:4.0. This is the same value determined from
observation (Rhines, 1986). (If one defines the venti-
lation ratio by calculation within the northern half of
the subtropical gyre, this ratio becomes 1:8.0 in the
model.) Accordingly, only a rather small portion of the
water in a gyre actually comes from the Ekman pump-
ing, while most water comes from the western bound-
ary outflow. Therefore, even if our model is successful
in determining the potential vorticity for the ventilated
thermocline, this is only true for less than 25 percent
of the total water; the rest of it must be specified a
priori in the model. It may seem a disappointment for
theoreticians who are enthusiastic about the ideal-fluid
thermocline. But this is as far as we can get now.

¢. The basic equations in density coordinates

The ideal-fluid thermocline equation consists of a
nonlinear system which has a much simpler form in
density coordinates (e.g., Robinson, 1965; Hodnett,
1978; Killworth, 1987). However, part of what we have
gained in simplifying the form of the equations is lost
because we must deal with some free boundary con-
ditions. In density coordinates, the Bernoulli function

B=P+pgz (2.9)

plays the role of the basic dependent variable. The hy-
drostatic relation becomes

B, =gz (2.10)

where subscript p denotes the derivative with respect
to p hereafter. Differentiating (2.10) one more time
gives

B,, = gz,. @2.11)

This is the principal equation for the ideal-fluid ther-
mocline in density coordinates. It is our major concern
in this study to formulate suitable boundary value
problems for this equation.

By introducing potential vorticity

q =fp23
B, = fg/q(B, p).

(2.12)
(2.11) becomes

(2.13)
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For the ideal-fluid thermocline g is a function of the
Bernoulli function and density (Welander, 1971); g
= (B, p). By assuming specific forms of Q, solutions
to the basic equation (2.13) have been found which
can satisfy different sets of boundary conditions (e.g.,
Welander, 1971; Janowitz, 1986; Killworth, 1987). By
patching together different forms of potential vorticity
functions, HH reproduced a global structure of sub-
tropical-subpolar gyres in a basin interior.

Our primary interest, however, is to examine how
this potential vorticity function for the ventilated ther-
mocline is determined by boundary conditions speci-
fied at all boundaries. Since there has not been such
an example, our goal is rather moderate. We want to
formulate appropriate boundary value problems for
the ideal-fluid thermocline and show just one example
of a boundary value problem which yields a reasonable
solution. Further manipulation and extension shall
certainly give more possible choices and better results.

d. Boundary conditions

We assume that

Ps = Po, (2'14)

where p, and B* are the density and Bernoulli function
at the upper surface, y = y; is the intergyre boundary.
At the western boundary potential vorticity is spec-
ified as a function of Bernoulli function and density
wherever water comes into the domain of study,

g = Q(B, p). (2.15)

At the eastern boundary the upper surface density
is assumed to be constant

B'=0 at x=x,

B*=0, w,=0 at y=y,,

Ps = Pos (2.16)

. and the base of the moving water is coincident with
the upper surface, i.e.,

Ps = Po, (2.17)

Below the upper surface the stratification of the stag-
nant abyssal water is given

B(pp) =0 at x=x,.

p: = p:(p), (2.18)

or equivalently
B®= B%p), B,"=B,%p) (2.19)

are given functions. These eastern boundary conditions
in the model guarantee that # = 0 at the eastern
boundary. v

The vertical boundary conditions need some dis-
cussion. Let us begin with the lower boundary condi-
tions. The model includes a layer of stagnant abyssal
water resting over a flat bottom. At the base of the
moving water, i.e., the interface between the stagnant
water and the unventilated thermocline, both the Ber-
noulli function and its derivative with respect to p are
continuous
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B°=B’ at p=pyx, ) (2.20a)
B=B} at p=pyx,y)  (2.20b)

where pp = py(x, ») is a free boundary.
Since in density coordinates geostrophy, the vertical
velocity, and mass conservation take the form

—pofv = —B,, (2.21a)
pofu = —B,, (2.21b)
w = uz, + vz, (2.22)
(uz,), + (vz,), = 0, (2.23)

boundary conditions (2.20a, b) imply that
Bx = By =0 at P= pb(xa y), (224)

and thus

u=v=w=90 (2.25)

at the base of the moving water.

Now let us discuss the upper boundary. Tradition-
ally, two conditions are given over the upper boundary
of a subtropical gyre
z=0, (2.26)
2.27)

In density coordinates, the first condition turns-out to
be '

B,=0 at p=p,

p=ps at

w=w, at z=0.

(2.28)

which is rather easy to apply in a model. For a subpolar
basin, the upper surface density is unspecified; there-
fore, (2.28) becomes a free boundary condition

B,=0, at p=p; (2.28)

There are two ways of applying condition (2.27).
First, at the upper surface the density conservation
equation can be turned into a first-order ordinary dif-
ferential equation along its characteristics. For sim-
plicity, assume that the upper surface density distri-
bution is independent of x. Accordingly, on the upper
surface the density conservation equation can be re-

(ps unknown).

written as
v = —wJlz,dpy/dy)". (2.29)
Combining (2.29) with (2.21a), it follows that
Bxs = _POWeqs(dps/dy)-l (230)

which links the horizontal derivative of B® to the po-
tential vorticity at the upper surface. For a general up-
per surface density distribution, (2.30) can be written
in a similar form by using characteristic coordinates.
This approach has been successfully applied to cases
where B,® is finite at the eastern boundary (HH).

It is readily seen that (2.30) is equivalent to the Sver-
drup relation in some earlier theoretical studies. For
example, assuming

q = 1/F(p)B, (2.31)
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(2.30) becomes, upon integrating once,

X
B2 = B2 = 20ulFe)dp)dy1 [ weds, 232
which is equivalent to Eq. (2.21) in Killworth’s study.
Assumption (2.31) was motivated by analytical con-
venience rather than physical reasoning. This assump-
tion cannot encompass the dynamical differences of
the ventilated and unventilated thermoclines, thus

failing to predict the correct structure.

In the present model, since a no-flux condition is
assumed along the eastern boundary, both v and B,’
are singular along the surface line at the eastern
boundary. As a result, (2.30) is not suitable for starting
the integration near the eastern wall. Instead, an in-
tegral condition can be used for numerical integration.

First, cross-differentiating (2.21a, b) and using (2.22),

(2.23) gives
Bv = fw,/z,, (2.33)
which combines with (2.21a) to yield
Bz, = pof *w,/B. (2.34)
Integrating over [o;, pp]
pofwd = | " Bud (2.35)

Substituting B,,/g for z, and integrating by parts, one
obtains

1 [
pofwa == [ 05B2dp,  236)
g

Ps

where boundary conditions (2.28) and (2.24) have been
used. Since B, = gz < 0 except on the upper surface,
Eq. (2.36) has a very clear meaning, i.e., (dz/dX),-const
has a sign different from w,. In other words, isopycnals
slope down westward in the subtropical gyre, while they
slope up westward in the subpolar gyre. Equation (2.36)
can be rewritten, after simple manipulation, as

- f B,%dp = (pof*2/B) f " wedx

+ [ B ondpyiar-ax, @37)

where p, = py(x, ) is variable and eastern boundary
conditions (2.16) and (2.17) have been used in deriving
(2.37). Using (2.10), (2.37) can be reduced to

_ f " Z2dp = 2o 1e8) [ weax

Xe
+ f Zz(pb)dpb/dX' dx. (237’)
X

This is the Sverdrup relation in an integral form; its
usefulness will be demonstrated in the following sec-
tions.
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For a reduced gravity model the last term in (2.37)
drops out. Since

Ps
f B,%dp ~ —Apg?D?, (2.38)
ob

where D is the layer depth, (2.37) degenerates to

D* = —(2pof?/gBAp) f “wedx  (2.39)
X

which is the familiar formula for the layer depth of a

reduced gravity model (assuming D = 0 at the eastern

wall).

3. Boundary value problems for the ideal-fluid ther-
mocline equation

The basic equations and boundary conditions for
the ideal-fluid thermocline have been discussed in the
previous section. Formulating suitable boundary value
problems of the ideal-fluid thermocline and the pro-
cedure of solving the boundary value problems are our
concern in this section. We will show that solving the
ideal-fluid thermocline can be reduced to repeatedly
integrating a second-order ordinary differential equa-
tion with some free boundary conditions.

a. Boundary value problems for a subtropical basin

The subtropical basin is divided into N west—east
sections and the integration progresses section by sec-
tion southward, starting from the northern boundary.
At each section the integration goes westward station
by station. At each station a two-point boundary value
problem of a second-order ordinary differential equa-
tion is integrated by a shooting method. This process
is depicted in Fig. 1.

For example, integration at section y, is underway
only after integration on section y, has been completed.
Integration at station A follows that at station G
(though for boundary value problem B/, this is not nec-
essary, see discussion below). After completion of in-
tegration at section y;, a one-dimensional data array
is stored in the computer memory for the functional
relation g = q(B, p,) for B = [0, B,)], where B,, is the
Bernoulli function on the upper surface at the western
end of this section. These data arrays can be used to
provide a potential vorticity value wherever B and p
are given. It is easy to see the connection between the
LPS model and the present model in tracing the po-
tential vorticity to the place where water enters the
domain of study.

At each station, the integration is reduced to solving
a two-point boundary value problem of a second-order
ordinary equation. As discussed above, the base of the
moving water is a free boundary with two boundary
conditions

B = B%(ps)

at p=pp (2.20a)
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B,=B,p;) at p=p,  (2.20b)

where both B%(p) and B, %(p) are given functions. Now
our task is to solve the second-order ordinary differ-
ential equation (2.13), i.e.,

Bpp = fg/Q(B, 0),

where g(B, p) is a known function for p > p; either in
the form of a specified function or data arrays of nu-
merical results from previous steps, though g(B, p) is
still unknown. In addition, there is a fixed boundary
condition at the upper surface (2.28) '

Bp=0 at p = p;s,

where p; = ps(x, y) is given for a subtropical basin.
Since (2.13) is of second order, it cannot be solved
without an additional condition.

There are two possible choices, and, accordingly, two
ways of formulating a suitable boundary condition for
the ideal-fluid thermocline.

1) BOUNDARY VALUE PROBLEM A -

Equation (2.13) and boundary conditions (2.28;
2.20a, b; 2.30) constitute a deterministic two-point
boundary value problem, i.c.,

B,, = fg/4(B, p), (2.13)
B,=0 at p = py, (2.28)
B =B%p,) at p=pp (ppunknown), (2.20a)
B, = B,%py) at p = ps, (2.20b)

Bf = BY(x + Ax) + Axw,q,(dpy/dy)™!, (2.30)

where B® and ¢; are the unknown Bernoulli function
and potential vorticity at the sea surface, and (2.30')
has been derived by rewriting (2.30) in a finite difference
form. This problem can be solved with a shooting
method and the Heun scheme (Mesinger and Arakawa,
1976) for the differential equation (2.13) as follows, see
Fig. 1.

Assuming g, given, (2.28, 2.30') give all the necessary‘

information to start the integration downward. As the
integration reaches point B, the corresponding potential
vorticity value g can be determined by interpolation
from data arrays generated from previous steps on sec-
tion yy, giving the first estimate of the Bernoulli func-
tion at point B. The integration continues to isopycnal
pp where the lower boundary conditions (2.20a, b) are
specified. Since the first estimate of g; is unlikely to
give a solution satisfying (2.20a, b), the value of ¢, is
repeatedly adjusted until (2.20a, b) are met. Obviously,
the integrating process can also be carried out upward
and yields the same result. See discussion for boundary
value problem B below.

This two-point boundary value problem is deter-
ministic. The well-posedness of this problem is rather
complicated. Due to its peculiar formulation, proof of
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the well-posedness is not of local nature at all. Howeyver,
when the iterative process does converge, the Bernoulli
function and potential vorticity at point 4 are deter-
mined and the integration process is moved westward
to the next station, and so on.

There are two possible difficulties associated with
this integration process. First, in the middle of the basin,
the value of the Bernoulli function for density less than
po may exceed the maximum value of the Bernoulli
function stored in the data arrays. Physically, this
means that the corresponding water particles come
from the western boundary, though their density is less
than pg. This is the shallow unventilated thermocline
discussed in the previous section. Accordingly, the po-
tential vorticity functional form has to be specified for
this type of water. Since this water circulates in the
upper ocean, its potential vorticity is unlikely to be
homogenized. Specification of an appropriate func-
tional form for these water particles also provides new
degrees of freedom for the basin circulation.

Second, the surface line along the eastern wall is a
singular line for the meridional velocity due to the spe-
cific eastern boundary condition applied in the model.
As aresult, B,” is unbounded near the eastern wall and
(2.30') is not suitable for starting the integration from
the eastern wall. To overcome this difficulty, the fol-
lowing formulation can be used.

2) BOUNDARY VALUE PROBLEM B

Equation (2.13) and boundary conditions (2.28;
2.20a, b; 2.37) constitute a deterministic boundary
value problem, i.c.

B,, = fg/a(B, p), (2.13)
B,=0 at p = p,, (2.28)
B =B%py) at p=pp, (ppunknown) (2.20a)

Ba = Bpa(pb) rat p = pp, (2'20b)

b Xe
- f B,%dp = 2pof?gB™" f wedx
Ps X

+ f "B, pp)dps/dx-dx. (2.37)

This problem can be solved by a shooting method
starting from a guessed density p = p;, since both B
and B, at p = p, can be determined by the given func-
tions B%p) and B,%(p). Equation (2.13) is integrated
upward for p, = p = p,. Although g, is unknown, it
can be determined such that boundary condition (2.28)
will be met at the surface. The value of p, must be
repeatedly adjusted such that integration condition
(2.37) will be met for the final set of parameters.

This formulation uses the integrated formula of the
Sverdrup relation and thus avoids the singularity as-
sociated with the eastern boundary appearing in the
previous formulation. Otherwise, these two formula-
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tions are very similar for the interior ocean, except that
they begin at different ends of the same density interval.

Both formulations show the intrinsic nonlinear cou-
pling between the ventilated and unventilated ther-
mocline. The determination of the potential vorticity
in the ventilated thermocline has been reduced to re-
peatedly integrating two-point boundary value prob-
lems of a second-order ordinary differential equation.
All boundary conditions for a basinwide model play a
role in this seemingly localized, vertical integration
process. First, the eastern boundary condition is com-
bined with the free boundary conditions at the interface
between the moving and stagnant water. In the next
section we will show that the assumption of a homog-
enized potential vorticity for water column with p, = p
= pg reduces this free boundary value problem to a
simple fixed boundary condition at p = py. Second,
the western boundary condition of specifying potential
vorticity is used for both the deep unventilated ther-
mocline with p = pg and the shallow unventilated ther-
mocline with p < pp whenever inversion of the potential
vorticity function reaches a Bernoulli function value
outside the range. of the ventilated water. Third, the
upper surface density distribution is used as the end
point of the vertical integration and the density gradient
is used in (2.30') for boundary value problem A. Fi-
nally, the Ekman pumping velocity is used either as a
link between the potential vorticity and Bernoulli
function at the upper surface, e.g., (2.30'), or as a ver-
tical integration constraint (2.37).

The ideal-fluid thermocline equation has been clas-
sified as a non-strict hyperbolic system (HH). Our
model shows the specific features of this system. As a
non-strict hyperbolic system, the ideal-fluid thermo-
cline model has properties similar to totally hyperbolic
systems, such as: 1) Some physical quantities (i.e., po-
tential vorticity, density and Bernoulli function) are
conserved along streamlines which are characteristics
of the system. 2) Two boundary conditions are specified
where water particles enter the domain of study (i.e.,
psand w, at the upper boundary, p and g at the western
boundary). The system also possesses properties which
do not belong to totally hyperbolic systems. For ex-
ample, in the process of vertical integration at each
station, all boundary conditions (including the eastern,
western, upper and lower boundary conditions) are in-
volved. Since no characteristic can link all these
boundaries with moving water in the interior, the
mechanism through which all boundary conditions af-
fect the interior points is of non-strict hyperbolic na-
ture. Our analysis here gives only a glimpse of the
mathematical and physical nature of this non-strict
hyperbolic system. Further study of this system is re-
quired.

b. Boundary value problem for a subpolar gyre

In a subpolar basin the Ekman pumping velocity is
positive, i.e., water is sucked into the Ekman layer.
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Therefore, the formulation of boundary value problems
may be different from the case of negative Ekman
pumping velocity. In LPS, the upper surface density is
determined by the outcropping line of individual layers.
A working assumption was also made in the model
that each layer is motionless until the one above it
outcrops. Apparently, this assumption is unnecessary
because water can be ventilated through the western
boundary even before the individual layer touches the
mixed layer directly. This is essential to models of con-
tinuous stratification, for example PY and HH.

Since all water particles in a subpolar basin come
from the western boundary and have a density larger
than pg, they belong to the deep unventilated ther-
mocline. Assuming the potential vorticity is a given
function g = ¢(B, p), the structure of the subpolar gyre
can be determined by solving the following free
boundary value problem.

BOUNDARY VALUE PROBLEM C

Equation (2.13) and the following boundary con-
ditions constitute a boundary value problem for the
ideal-fluid thermocline in a subpolar basin.

B,, = fg/a(B, p), (2.13)

B, =0, at p=p, (psunknown) (2.28')
B =B%py), at p=p, (p,unknown) (2.20a)
B, =B py) at p=p, (2.20b)

b Xe
" B2dp = 2501087 [ e
P X

s

Xe
+ f B, Xpp)dpp/dx-dx (2.37)
X

where B%p), B,%(p) and q(B, p) are all given functions,
although they may be piecewise continuous.

The numerical solution of boundary value problem
C is straightforward. The subpolar basin is divided into
Nlatitude sections. At each section the integration starts
from the eastern boundary where p; = p, = po and
marches westward station by station. At each station
a shooting method is applied by starting from a first
guess of pp. From (2.20a, b) B and B, at p, can be
calculated and used to start the integration upward.
The integration stops at the free boundary p = p, where
B, crosses zero. The integration constraint (2.37) is
checked to see whether the first guess of p, is correct.
This value pj, then, can be repeatedly corrected to make
the solution meet condition (2.37). The integrals in
(2.37) can be calculated by some standard formula and
(2.13) can be integrated by standard finite difference
schemes.

This boundary value problem is deterministic.
Therefore, for reasonable boundary conditions, such
as w.(x, »), q(B, p) and B%p), the above process will
give pp and p, at each station. The integration process
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can be carried out at the next station to the west along
the same section and so on.

A major difference between boundary value problem
C and boundary value problem A or boundary value
problem B is that now the integration at each section
is independent of each other. This is a very convenient
feature.

The well-posedness of this problem will be left for
further study; here we want to point out some hidden
features of this problem.

(i) Rearranging (2.37) as

Xe Pb
f B, *(pp)dpy/dx - dx = — f B,%dp
Ps

- 200787 [

it is readily seen that dp/dx is generally negative in
the subpolar gyre where w, is non-negative. That means
the base of the moving water slopes up eastward.

(ii) As pointed out in section 2, (8z/8X),-cons < O
(w, > 0) for the moving water. Therefore |g”| < |¢°|
is required as a consistent condition for the boundary
value problem C. Physically, it is clear that the strati-
fication in the moving water should be weaker than in
the stagnant water because of the Ekman suction.

4. Solution with constant potential vorticity in the deep
unventilated thermocline

We have formulated boundary value problems for
the ideal-fluid thermocline in the previous section. Now
we study some simple examples to show how to solve
these boundary value problems. The simplest case is
one of constant potential vorticity in the deep unven-
tilated thermocline. As we will see, the free boundary
value problem in the subtropical gyre reduces to a fixed
boundary value problem for the same second-order or-
dinary differential equation. For the subpolar basin the
free boundary value problem reduces to a simple an-
alytical solution.

Specifically, the model consists of an ocean on a 8-
plane with the central latitude at y = y, where f = f;.
The abyssal water has a linear stratification p,* = const,

thus
q° = fp. 4.1)

The deep unventilated thermocline has a constant po-
tential vorticity (see RY) '

" = fop:* 4.2)

First, we will examine the solution in the subtropical
and subpolar gyre separately. Second, we will prove
the continuity of the solution across the inter-gyre
boundary. ’

for pp=p = pg.

a. Solution in the subtropical basin

Since the potential vorticity function for p = pg has
been specified, our discussion will be focused on the
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determination of the potential vorticity for pg = p = ps,
where p; is the upper surface density at a given station.
In other words, we want to transfer boundary condi-
tions (2.20a, b; 2.37) to the intermediate isopycnal p

= Po-
Assume that

B=B° B,=B, at p=p,. (4.3

Integrating (2.13) downward with boundary conditions
(4.3), one obtains

B, = B,° + f2(p — po)/q" (4.4)
B=B°+ B,% — po) + f8(p — po)*/2¢". (4.5)

According to the eastern boundary condition (2.16)
and (2.17),

Be¥0, B,=0, at p=pg;

thus the corresponding structure at the eastern wall is

B, = fg(p — po)/a* (4.6)
B¢ = fg(p — po)2/2q“- 4.7)
Substituting (4.4) and (4.6) into (2.20b) gives !
s — po = B,%4°¢"Ifg(a" — ¢. (4.8)
Substituting (4.5) and (4.7) into (2.20a) gives
B® = B,%"q°/2fg(q" — q"). (4.9)
Substituting (4.8) into (4.4), one obtains
B,® = B,°¢"/(g" — ¢. (4.10)

Since B, = gz by definition, the above formula states
that at each zonal section the depth of the base of the
moving water is linearly proportional to the depth of
the p = po interface. Meanwhile (4.9) means the Ber-
noulli function on the pg-isopycnal is proportional to
the square of the interfacial depth. It is important to
note that (4.8), (4.9) and (4.10) are independent of all
upper boundary conditions.

It is easy to show that (4.10) is valid for more general
cases where p,” is not constant, but potential vorticity
is homogenized on each isopycnal surface and thus g*/
¢° is a constant. Thus, (4.10) is an important relation
describing the depth of penetration of a homogenized
gyre.

Now the free boundary conditions (2.20a, b) at p
= pp (unknown) become a fixed boundary condition
(4.9) at p = py. After a solution is determined, the free
boundary p = p, can be calculated from (4.8).

Similarly, (2.37) can be simplified in the present case.
Using (4.4, 4.8, 4.10), one obtains

[ Bdo = 8,201 - (1 = a4y

0
+f Bdp (4.11)
Ps
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[ Boodouiax-ax = 48,73 f5ta%1a" - 17

(4.12)
Substituting (4.11, 4.12) into (2.37) gives a final form

B,Pg"1 — (1 — q*/g"y 213/ — f B,%dp

Ps

= 2pof 288" f “wedx. (4.13)

Again, this is a vertical integration constraint over the
dynamical field. It is equivalent to the Sverdrup relation
in many theoretical models. Assuming B, is a linear
function of p, (4.13) predicts that the depth of the po-
isopycnal interface slopes down westward in proportion
to [(x. — X)we}'>.

Therefore, using the new boundary conditions (4.9)
and (4.13), boundary value problems A and B become
fixed boundary value problems in the following forms.

BOUNDARY VALUE PROBLEM A’

Equation
B,, = fg/a(B, p) (2.13)
with fixed boundary conditions: .
B, =0 at p=p; (2.28)
B* = B(x + AX)
+ Axw.qs(dps/dyy™ at p=p; (2.30)

B° = B,%g"q%/2fg(q° — q") at p=po (4.9)

BOUNDARY VALUE PROBLEM B’

Equation . )
B,, = fg/4(B, p) (2.13)
with fixed boundary conditions:
B,=0 at p=np; 2.27)

B® = B,%q"q%/2fg(q° — ¢") at p=po (4.9)
3 _ 0
BOgH — (1 - aa Ve - | Bdp
Ps

' Xe
= 200287 [ wedx. (413)
X .
These two boundary value problems can be solved
by a shooting method similar to the ways described in
the previous section. For example, in boundary value
problem B, assuming a first guess of B,°, B® can be
calculated by (4.9). Thus (2.13) can be integrated from
po 10 ps. g5 can be determined by requiring (2.28) be
met. Then (4.13) is checked out, repeatedly adjusting
B0 until (4.13) is met.
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b. Solution in the subpolar basin
The vertical structure can be calculated by integrat-
ing (2.13) downward. At the upper surface
B, =0, B°(unknown) at p = p,(unknown).
(4.14)

Therefore, a simple integration in density coordinates
gives the structure of the moving water

B, = felo = p5)/q" - (@415)
B = B’ + fg(p — p)’/2q" (4.16)

where g” is the constant potential vorticity specified in
(4.2). At the base of the moving water B, and B should
match the values calculated from (4.6, 4.7), thus

pb — po = f(ps — pIfo 4.17)
B* = fg(f— fo)po — p)*/2/o°p".  (4.18)

The integrals in (2.37) can be calculated exactly

7 B2do = L aton o - 0 @19)

[ Bondpax- dx = =4 g tfoo Vo = 0
(4.20)

where the boundary éonditions that p, = p; = po at x
= X, have been used. Substituting (4.19), (4.20) into
(2.37), one finds

s — ps = Jol6pop " We(x. — X)/gB(f — '3 (4.21)

Using (4.21) both the Bernoulli function and density
at the upper surface can be found

B* = 0.5([36po™(f — fodap"wi(x. — x)*/8°]'? (4.22)
ps = po + [6pop-(f — fof Welx. — X)/gB]'>.  (4.23)
The base of the moving water is

z% = B,’/g = f6powe(xe — x)/gBp.*(f — ). (4.24)

This solution was first discussed by PY. The analysis
above shows that this is a special case of a general family
of solutions.

¢. Continuity of the solutions near y = y,

When approaching the y = y, line from the sub-
tropical interior, the second term in (4.13) is a higher
order term compared with the Ekman pumping term,
thus it can be omitted. We have the following approx-
imations:

L= (1 —g%q" =~ P87y —y)>  (4.25)

[ wedx = waty =y = %) @.26)

X
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where ‘
Wa = dw/dy| =y, (4.27)
Thus (4.13) gives an estimation
B,° ~ —[6pogBwa(x. — X)/p"1"(y — o).  (4.28)

By (4.9) one obtains

B® = 0.5/(36p02%gwip,%/B)"*(xs — x)**(¥ = yo).
(4.29)

Furthermore, the base of the moving water is
VARS f(6p0Wd/gﬂzpza)l/3(-xe - x)l/3- (430)

Now it is easily seen that, as y — y, from the subpolar
basin, (4.22) and (4.24) become the same as (4.29) and
(4.30). Assuming w, is continuous across y = ), both
the Bernoulli function at the p = py isopycnal interface
and the base of the moving water are continuous at y
= 3. Furthermore, by dlﬁ'erentlatmg (4.22), (4.29) with
respect to y, one finds that

u® = —dB/dy/fpo = —0.5(36gw0.*/Bpo)'*(x, — x)**
4.31)

is continuous and finite at y = yj,.

d. Consistent condition of the upper surface density
distribution near the northern boundary of the
subtropical gyre

For a boundary value problem of the ideal-fluid
thermocline in a subtropical basin, the upper surface
density distribution is needed as the upper boundary
condition. At first, a natural choice for a simple theo-
retical model is to assume that the upper surface density
is a linear function of y, at least near the intergyre
boundary y - y,, i.e.,

p = po + (¥ — yodps/dy, (4-_32)

where dp,/dy is a constant. However, a careful exam-
ination of the potential vorticity field reveals some in-
consistency in the solution. For a section near y = yj,
the average potential vorticity of water above the pg-
isopycnal surface can be estimated by (4.28)

q = folp/Az = —fogdp,/dy+ (¥ — o)/ B,°

= fodps/dy - (8p°16poBWa) ' P(x. — x)7'3.  (4.33)

Therefore, g is finite as y = ), except near x = X,
where g has a —Y-power singularity. However, all
streamlines within )y — ¢ < y < yp and p < pg have to
pass through the “bottle neck™ on the eastern boundary
and thus should have had an infinite potential vorticity
even before they reach the eastern boundary. Thus all
these water particles should have an infinite potential
vorticity. This implies two important constraints.
First, the potential vorticity of the shallow unven-
tilated thermocline cannot be chosen too arbitrarily
because it should be infinite for the aforementioned
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water particles. Now, it is very clear that the dynamic
character of the shallow unventilated thermocline is
quite different from the deep unventilated thermocline,
as the potential vorticity of the latter is not subjected
to the same constraint.

Second, the potential vorticity of the ventilated ther-
mocline should be infinite for the regime adjacent to
the northern boundary of the subtropical gyre. To avoid
an inconsistency in the model we discuss several pos-
sible remedies.

(i) A simple choice is to assume that the upper sur-
face density distribution is different from a linear func-
tion near y = Jj. Basically, to have a consistent solution,
the density gradient should be singular at y = y,, i.e.,

dp/dy =0 at y=y,. (4.34)
As a simple choice, we assume that
p=p0_a(y0_y)7’ a>03 0<7< 19 (4'35)

where « and v are given constants. Near the boundary
¥ = yo, we have the ﬁmte difference ’

Ap ~ ay(yo — Y. (4.36)

Accordingly, the averaged potential vorticity from
(4.28) is

g = —foAp/Az = fogay(¥o — ¥)'/B,°

= 1) (gp,"/6p0BWa) " (x, — x),
4.37)

Therefore, if the density distribution is in the form of
(4.35), potentlal vorticity is infinite near Y=o and
the model is self-consistent.

Obviously, constraint (4.34) or (4.35) applies only
1o the neighborhood of y = y,. Far away from y = yj,
the upper surface density distribution is not subjected
to the same constraint.

Since a solution of the ideal-fluid thermocline also
depends on the potential vorticity specified for the
shallow unventilated thermocline, we have been unable
1o pin down the range of v in (4.35). ¥ = 0.5 is chosen
for a numerical example in section 5.

(ii) In the above discussion, the Ekman pumping
velocity is assumed to be a linear function of y near y
= ¥, see (4.26). If we assume p, remains a linear func-
tion of y but w, has a functional form

= foay(3o

We=wa(yo— ), n>1 near y=y, (4.38)

then the corresponding dynamic fields near y = y, have
the following estimations

B~ (3o — y)"*P >0 as y— yp, (4.39)
B~ (p—pri >0 Las y— ¥, (4.39b)
B® ~ (yo — p)?m3 >0 as y—>yp, (4.39)

W0~ (yo— 3 >0 as y—> ), (4.39d)



APRIL 1988

g~—(o—""M >~ as y-—>y. (4.3%)

Although the inconsistency with the potential vorticity
field disappears, the longitudinal velocity on the upper
surface vanishes and the base of the moving water out-
crops at y = y,. Therefore, this is not a good choice.

(iii) We have assumed that the potential vorticity
of the unventilated thermocline matches that of the
abyssal water at y = )y, see (4.2). This assumption may
not be true for the general case. Suppose that

q"#q° at y=y, (4.40)
the upper surface density has a form
p=po—ayo—»", a>0, 0<y<7y, (441)

and w, remains the same as in (4.26). After similar
manipulations as above, we have the following esti-
mations

Bl ~(y-»"r—>0 as y—>y, (442)
Bl ~(m-»r =0 as y—>y, (442b)
B~ (yo—»"—>0 a5 y—>y, (442)
W~p—"P>w as y—>y, (“42d)
g~ -y as y—>yp. (4.42e)

Therefore, the consistency of the potential vorticity field
requires

. (4.43)

W=

Y<Y =

When (4.43) is satisfied, the solution is self-consistent.
Note that u is unbounded near y = y,, but this is con-
sistent with (4.42b), which means the base of the mov-
ing water outcrops at ¥ = y, and thus the longitudinal
velocity must be unbounded.

Our discussion above is based upon the assumption
that p,? and g” are constant. This is not true for general
cases. That ¢* # g® at y = y, can introduce some in-
teresting flow patterns which are left for further study.

(iv) The last and the most reasonable choice is to
change the eastern boundary condition. If we give up
the strict eastern boundary condition that u = 0 at x
= X,, then g can be finite for water with p < p,, and
there is no inconsistency in our model. A general east-
ern boundary condition will also make a further con-
straint on surface density, such as (4.34), (4.35), un-
necessary. The detailed discussion will be presented in
section 6.

5. A numerical example

We have chosen a model ocean with parameters
similar to the North Atlantic Ocean. The model ocean
has horizontal scales of L, = 6000 km, L, = 6600 km.
The central latitude is at 45°N, thus f; = 0.000103 s,
B =161 X 107 s7! cm™. The Ekman pumping ve-
locity has a simple form
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w, = —0.0001 X sin(2wxy/L,), 5.1)

where y = 0 at the southern boundary. The upper sur-
face density distribution in the subtropical gyre is

ps = 1.0274 — 0.0012[2(yo — W)/L,)'2,  (5.2)

see the lower part of Fig. 3. Figure 3 also shows the
upper surface density map of the subpolar basin, Start-
ing from the southern, eastern and northern bound-
aries, dense isopycnals gradually outcrop toward the
center of the gyre. From (4.23) the outcropping lines
are

x = x, + constant/(f — fo)*W,. (5.3)

It should be noted that the mixed layer in the model
is purely passive, i.e., there is no convective adjustment
or other type of coupling between the mixed layer and
water below. A simple model including convective ad-
justment is discussed by Huang (1988a).

The stagnant abyssal water has a linear stratification:

p=—10"%gcm™, (5.4

As pointed out in the previous section, the deep un-
ventilated thermocline is assumed to have a constant
potential vorticity

a" = fo = fon " (5.5)

Thus, the stratification of the deep unventilated ther-
mocline varies with the latitude

26.6
02 - ' -
26.4
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X

FI1G. 3. Upper surface density (s,) distribution in
a subtropical-subpolar basin.
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o = foo 2 lf (D)
S =Jo+ By — yo). (5.7)

For the shallow unventilated thermocline, the po-
tential vorticity function can be quite different from
the deep unventilated thermocline. We choose the fol-
lowing forms

d = d(B,, p){! + 4 X tanh[0.12(B ~ B,”)/B,1}
(5.8)

(5.6)
where

where .
d=gqg"! (5.9

is the potential thickness, B, is the upper surface Ber-
noulli function at the western boundary, p; is the upper
surface density of the ith section. We choose such a
form based on the following consideration. First, the
water in the shallow unventilated thermocline is un-
likely to have potential vorticity homogenized. Second,
a constant potential vorticity for the shallow unventi-
lated thermocline may introduce some kind of discon-
tinuity into the solution which is an unnecessary com-
plexity in the model. Since the real boundary between
the ventilated and unventilated thermocline is un-
known before solving the problem, the form in (5.8)
can automatically guarantee a smooth transition be-
tween these two regions. Anyway, we want to empha-
size that the specific form of the potential vorticity
functions in (5.8) is technical rather than essential. Dif-
ferent coefficients and form of function can be used
positively. The most important point is that the choice
of the potential vorticity function of the shallow un-
ventilated thermocline is an important part of for-
mulating a suitable boundary value problem. Although
the vertically-integrated mass flux of the wind-driven
circulation in a basin is solely determined by the Ekman
pumping velocity, the vertical structure of the circu-
lation is determined by many other boundary condi-
tions, such as the sea surface density distribution and
the potential vorticity distribution of the deep and
shallow unventilated thermocline. Correctly specified
boundary conditions determine a unique solution
among infinitely many possible solutions.

Since our main goal is to demonstrate the idea rather
than numerical detail, a very coarse grid is used for the
subtropical basin. The subtropical surface is divided
into 12 sections with 21 stations set up along each sec-
tion. The integration of (2.13) is carried out with a
simple Heun scheme and the integral in (4.13) is cal-
culated by a trapezoidal rule.

Both boundary value problem A’ and B’ have been
tested numerically. Boundary value problem A’ has
been found not very stable. This numerical instability
seems largely due to the specific eastern boundary con-
dition used in the model. Since all isopycnals of p < pg
have to outcrop along the eastern boundary, both v
and B, are singular at x = x,. Because in boundary
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value problem A' integration must start from the station
adjacent to the eastern wall and move westward station
by station, errors accumulate quickly. Therefore, im-
proper treatment of the eastern boundary region leads
to a totally unacceptable solution.

Boundary value problem B’ has been found to be
rather stable. There are some advantages in this for-
mulation. First, the vertically integrated condition is
free of singularity even along the eastern wall. Second,
integration at each station is independent of other sta-
tions at the same zonal section. Therefore, errors do
not accumulate during the integration along one sec-
tion. The result shown below is calculated with bound-
ary value problem B'.

Since the present example is an extension of the PY
model, many results are very similar to their results,
with the major exception of the ventilated thermocline.
Thus the reader is advised to compare the present re-
sults with theirs. In the following discussion only the
differences between the two models will be emphasized.

Figure 4 shows the upper surface Bernoulli function
map. There is an anticyclonic gyre in the subtropical
basin and a cyclonic gyre in the subpolar basin. These
two gyres are ‘separated by the intergyre boundary y
=y, along which the zonal velocity is a maximum. By
(4.31) one finds

u=425Ax*"cms! (5.10)

_where Ax is the nondimensional distance from the

~ FIG. 4. The upper surface Bernoulli function mép of a subtropical-

subpolar basin, in units of 10* g cm™ s72,
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castern wall. This velocity value seems on the low side.
In HH, 4., is the order of 8 cm s™!. This difference is
due to the fact that the base of the moving water in
the model is very deep. Streamlines are closely spaced
along both the eastern and northern boundary, indi-
cating some singularity associated with the velocity
field. From (4.22) we can calculate the meridional ve-
locity in the subpolar gyre

v° = B.5/fpo = —0.5[36(S — fo)
X gp w2873 (x, — x)"13. (5.11)

Thus, near the eastern boundary the meridional ve-
locity has an algebraic singularity. Similarly, if we use
an approximation

We = Wa(Y = Vn) (5.12)
to estimate zonal velocity at the northern boundary,
we have

1
Uy = —Bys/fpo == 3 [36( __ﬁ))gpzade

X (xe = X871y =y 2. | (5.13)

Therefore, both northern and eastern boundaries are
algebraic singularity lines for velocity. Although we
have not analyzed the eastern and southern boundaries
of the subtropical gyre, the structure seems similar. This
singularity along these boundaries is an unrealistic fea-
ture of the model. For different models the nature of
these boundary currents may be different. If the u =0
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FIG. 5. The base of the moving water, in units of km.
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FI1G. 6. Flow pattern on isopycnal surface o, = 26.48. Solid lines
are streamlines (Bernoulli function isolines, in units of 10* g cm™!
s72). Thin dashed lines are depth contours, in units of 100 m. Heavy
dashed line is the outcropping line.

condition at the eastern boundary is released, ventilated
isopycnals need not outcrop along the eastern bound-
ary, and thus the singularity along these boundaries
will disappear (Huang, 1988b).

For a long time the appropriate lower boundary
conditions for the ideal-fluid thermocline have been
unclear. Olbers and Willebrand (1984) tried to prove
the nonexistence of the level of no motion. However,
since potential vorticity and Bernoulli function con-
servation relations are only meaningful for the moving
water, their argument does not apply to the base of the
moving water. The present model assumes that the so-
lution should match the stagnant abyssal water at the
base of the moving water. Figure 5 shows the depth
map of the base of the moving water. Therefore, we
have proved the existence of the level of no motion by
constructing a solution with the base of the moving
water below which every surface is a level of no motion.

As shown in section 4, the solution is continuous
across the intergyre boundary. As seen from Fig. 5,
the base of the moving water in the subtropical gyre is
deepest at the northern edge of the gyre and it increases
farther northward. This northern intensification is
consistent with observation (i.e., Montgomery, 1938)
and the theory of potential vorticity homogenization
by RY. .

In the following paragraph we discuss flow patterns
on different isopycnal surfaces. Figure 6 shows flow
patterns on oy = 26.48 surface. This is a very shallow
isopycnal surface which outcrops at y = 0.208. Water
particles are injected from the mixed layer along the
outcropping line and move southwestward toward the
western boundary. Since vertical velocity is always
negative in the subtropical gyre, streamlines flow from
shallow to deep places. Along the southern boundary
closely spaced streamlines and isobaths indicate the
singularity associated with the boundary. Obviously,
all water on this isopycnal surface is ventilated.

The flow pattern on ¢, = 26.8 is shown in Fig. 7.
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FIG. 7. As in Fig. 6 but on isopycnal surface o, = 26.8.

This isopycnal surface outcrops in the northern part
of the subtropical basin. After leaving the mixed layer,
water particles follow anticyclonic paths, i.e., first move
southeastward then southwestward. Along trajectories
water particles sink down gradually as seen by the in-
tersection of the trajectories with the isobaths. In the
northwest corner there is water coming from the west-
ern boundary outflow. This is the so-called shallow un-
ventilated thermocline, or the pool region in LPS. Note
that the boundary between the ventilated and shallow
unventilated thermoclines is a result of global dynamic
balance. It was unknown before the solution was found.
It is the special feature of the ideal-fluid thermocline
equation. This solution-dependence of the boundary
is not unlike the sonic line (where the local particle
velocity is equal to the local sound velocity) in transonic
aerodynamics, which must be calculated as part of the
solution and different boundary conditions must apply
to different sides of this critical line.

Figure 8 shows the flow pattern on ¢, = 27.4. This
isopycnal surface outcrops along the intergyre bound-
ary. Complete anticyclonic trajectories on this isopyc-
nal surface are a typical pattern for a subtropical gyre.
All water particles on this surface are unventilated. In

F1G. 8. As in Fig. 6 but on isopycnal surface g, = 27.4.
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the model this surface is the interface between the deep
and shallow unventilated thermoclines. As shown in
the previous section, potential vorticity of the shallow
unventilated thermocline must be infinite near the
northern edge of the subtropical gyre; therefore, the
potential vorticity has some kind of discontinuity across
this surface. Of course, if the no-flux eastern boundary
condition is released, it may be possible to construct a
solution which has potential vorticity continuous across
this interface.

For isopycnal surfaces with g, > 27.4, their patterns
are different. These isopycnals extend into the subpolar
basin and some of them outcrop.

Figure 9 shows the flow pattern on ¢, = 27.8. This
isopycnal surface outcrops in the middie of the subpolar
basin, shown by the heavy dashed line. In the subpolar
gyre streamlines emerge from the western boundary
with given potential vorticity and move upward along
cyclonic trajectories until they reach the outcropping
line where they are picked up by the mixed layer. Note
that a small part of the water on this isopycnal surface
does not outcrop, but comes back to the western
boundary at the northwestern corner. Along the edge
of the northern, southern, and eastern boundaries there
is a narrow band of stagnant abyssal water (shadow
zone in LPS). There is an anticyclonic gyre in the sub-

T

AR e i

L
¢
k
[
&
£
[
.
P
[
[+
'.
’

i, o

FIG. 9. Flow pattern on isopycnal surface o, = 27.8. Shaded area
is the shadow zone and the heavy dashed line is the base of the
moving water. Solid lines are Bernoulli function isolines, in units of
10* g cm™ 52 Thin dashed lines are depth contours, in units of km.
The innermost dashed line in the subpolar basin is the outcropping
line.
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tropical basin. Comparing isobaths in Figures 6, 7, 8,
9 (and 10), it is readily seen that the bottom of each
isopycnal surface is gradually moving toward the
northern boundary of the subtropical gyre, i.e., the so-
called northern intensification.

Figure 10 shows the flow pattern on ¢y = 28.9. (We
realize that o, in the real oceans never reaches such a
high value. Since a linear stratification has been used
in the example, this isopycnal surface just shows an
example for the deep unventilated thermocline.) This
isopycnal surface does not outcrop, and there is a vast
domain of stagnant abyssal water. The intersection of
the base of the moving water and this isopycnal surface
1s shown as a heavy dashed line. The isobath map shows
a dome-shaped structure in the subpolar basin and a
small bowl-shaped structure in the subtropical basin.
At this density surface the subtropical gyre has been
reduced to a very tight circulation in the northwestern
corner of the subtropical basin.

The vertical structure of the circulation can be seen
clearly from different vertical sections. Figure 11 shows
a zonal section across the central latitude of the sub-
tropical gyre (y = 0.25). All isopycnals with p < pg
outcrop at the eastern boundary. Therefore, all these
density layers reduce to zero thickness, corresponding
to an infinite potential vorticity. This singularity is in-
trinsic for the eastern boundary condition used in the
present model. If another type of eastern boundary
condition is used, the structure near the eastern
boundary may be different. Below the pg isopycnal sur-
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F1G. 10. As in Fig. 9 but on isopycnal surface g, = 28.9.
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FIG. 11. Density section at y = 0.25. Dashed line is the base of the
moving water, stagnant abyssal water is on the right and the deep
unventilated thermocline is on the left. Note that below the o, = 27.4
isopycnal surface the density interval is double.

face there is the deep unventilated thermocline with a
constant potential vorticity and the stagnant abyssal
water. A heavy dashed line indicates the boundary be-
tween these two types of water (the base of the moving
water).

The density section at the central latitude of the sub-
polar basin is shown in Fig. 12. The same figure was
shown by PY. We include this figure to make our cir-
culation complete. Here all moving water has the same
potential vorticity, some shallow isopycnals outcrop,
while others do not. A dashed line indicates the bound-
ary between the moving and stagnant water.

The density section at the western boundary is shown
in Fig. 13. In the upper part of the subtropical gyre,
there is the ventilated thermocline and the shallow un-
ventilated thermocline. This part of the map is the es-
sential difference between the model and PY’s solution.
A heavy dashed line indicates the base of the moving
water. Obviously, the bottom of the moving water
reaches the maximum in the middle of the subpolar
western boundary. In the subtropical basin the bottom
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F1G. 12. Density section at y = 0.75. Dashed line is the base of the
moving water. Isopycnal interval is double for the no-outcropping
isopycnals.
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FIG. 13. Density section at the western boundary. Heavy dashed
line is the base of the moving water, thin dashed line is the inter-
gyre boundary. Isopycnal interval is double for non-outcropping iso-
pycnals.

of the isopycnal surface gradually moves northward
and reaches a depth of 2.5 km at the northern edge of
the subtropical basin.. This is the northern intensifi-
cation of the subtropical gyre.

As a comparison, we have included a g4-section from
the western North Atlantic (GEOSECS), Fig. 14. Since
‘our model includes neither mixed layer nor thermo-
haline process, we will compare the structure between
the 100 and 2000 m depth. Here we see the stagnant
abyssal water separating from the moving water by an
interface deepening northward, thus leaving a vast zone

RS s

DEPTH IN METERS
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of stagnant water in the equatorial region. Near the
intergyre boundary, there is a fairly sharp horizontal
density front representing the Gulf Stream. Therefore,
assuming an infinite density gradient in the model is
a reasonable approximation in this area. There are
clearly bowl-shaped isopycnals in the subtropical gyre
and dome-shaped in the subpolar gyre. Our model
seems able to reproduce the overall structure of the
subtropical gyre, especially the top 1000 meters. How-
ever, the model result is quite different from the ob-
servation for the deep circulation and the subpolar gyre,
due to our basic assumption of nondirect thermal forc-
ing and linear stratification of the abyssal water. Since
our focus in this study is mainly on the basic formu-
lation of boundary value problems of the thermocline
equation rather than comparison with observations,
we will not try to go into the details.

Another way of viewing the continuous circulation
structure is the 8-spiral method. We have drawn two
B-spiral diagrams. Figure 15 shows four spiral diagrams
in the subtropical gyre. Some marks on the curves are
not equally spaced near the upper surface, but marks
for the deep unventilated thermocline show vertical
stations with a density interval of Ao, = 0.1. These
curves clearly show the continuous vertical structure.
All these curves converge at the coordinate origin, con-
firming the existence of the base of the moving water.
Below the upper surface du/dz is always negative due
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FIG. 14. A opsection of the western North Atlantic. (Adapted from GEOSECS Atlantic Expedition.)
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FIG. 15. Beta-spirals in the subtropical gyre (in units of cm s™!) at points, (x, y)-coordinates:
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(a) 0.25, 0.125; (b) 0.75, 0.125; () 0.75, 0.375; (d) 0.25, 0.375.

to the thermal wind relation. Accordingly, the zonal
velocity may reach a maximum value below the surface
as indicated by curves (a) and (b). Near the base of the
moving water all u-components become negative. This
is due to the fact that the bottom of the isopycnals

1.5

0.0

-+

migrates northward, thus at any point in the subtropical
gyre the velocity at the lowest moving isopycnal is al-

ways westward.

Figure 16 shows four 3-spirals in the subpolar basin
which have structure similar to the previous case, ex-

(b) 0.75, 0.875; (c) 0.75, 0.625; (d) 0.25, 0.625.

. 16. Beta-spirals in the subpolar gyre (in units of cm s™*) at (a) 0.25, 0.875;
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cept now the spirals rotate in the opposite direction.
These curves are not very smooth near the base of the
moving water due to the very low resolution used in
the calculation. .

Since there have been many similarity solutions,
which are based upon specific assumptions, a natural
question is how does the present solution compare with
some existing similarity solutions. We have shown the
functional relation between the potential vorticity and
the Bernoulli function, Fig. 17. Since the potential vor-
ticity is infinite along the eastern boundary, it is easy
to use the reciprocal d = ¢! in the calculation. This
quantity can be called potential thickness. Therefore,
the d-B relation is the actual relation shown in Fig. 17.
In many similarity solution studies, 4 has an assumed
simple form. For example, Killworth (1987) assumes

d = F(p)B.

This relation corresponds to a straight line from the
coordinates’ origin. Obviously, our solution is quite
different from the above assumption.

In fact, the major point in this study is that the po-
tential vorticity of the ventilated thermocline is a so-
lution of a complete boundary value problem of the
ideal-fluid thermocline equation. Different boundary
conditions will certainly give different forms of poten-
tial vorticity function for the ventilated thermocline.
Any a priori specified form of this function cannot
satisfy a general form of boundary condition.

As the final step, we show the potential vorticity map
on the upper surface of the subtropical basin in Fig.
18. We leave the band along the northern, eastern, and
southern boundaries blank since potential vorticity
along these boundaries is infinite. Potential vorticity is
finite and continuous away from these boundaries, thus
our continuous model is free of the potential vorticity
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FIG. 17. Potential thickness (in units of 10'? g~! cm* s)-Bernoulli
function (in units of 10* g cm™~!.s7?) relations for different densities:
(@) o5 = 27.05, (b) 04y = 26.91, (C) 043 = 26.8, (d) 644 = 26.71, (€)
aps = 26.63, (f) a6 = 26.55, (8) 047 = 26.48, (h) 045 = 26.42, (i) 04
= 26.36.
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FI1G. 18. Potential vorticity distribution on the upper surface, in
units of 10712 g cm™ 57!, The value should have been oo at the
northern, eastern and southern edges.

singularity along the outcropping lines in the LPS
model.

6. General boundary value problems for subtropical/
subpolar basins

a. The general case when p; = py(x, v} in the subtropical
basin

Assume that the northern boundary of the subtrop-
ical basin is still a latitude line y = y, where w, = 0
and p; = constant. According to a lemma proved by
HH, a solution with no-mass-flux crossing y = yyis a
consistent solution and thus the subtropical basin can
be treated in isolation. Then both boundary value
problems A and B can be modified as follows.

1) BOUNDARY VALUE PROBLEM A (MODIFIED)

Introducing new orthogonal coordinates (/, n) such
that / = constant follow p; = constant lines, (2.29) can
be rewritten as :

v = —we(z,dps/dn)". 2.29)
Using the geostrophic condition, one obtains .
dB’/dl = —pow.q,(dps/dn)". (2.30)

Therefore, by tracing along p, = constant lines, the
integration process can be carried out similar to before.
Examples of tracing surface density contours has been
shown by HH.

2) BOUNDARY VALUE PROBLEM B (MODIFIED)

Equation (2.37) is still valid and the formulation of
boundary value problem B is basically unchanged.
However, instead of creating N one-dimensional data
arrays ¢ = Q;(B, p) (i = 1, - - -, N), now we generate
atwo-dimensional array ¢ = Q(B, p) at irregular points
(Bi, p)) (. =-1, - -+). In the process of integration,
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potential vorticity is calculated by interpolation of this
two-dimensional array. There might be some ambiguity
about the exact boundary separating the ventilated
thermocline from the shallow unventilated thermocline
in the (B, p) space. Otherwise, the integration procedure
remains the same as before. This problem will be re-
ported in some upcoming study.

b. Lemma condition

A lemma proved by HH guarantees that there is no
closed p; = constant line in a subtropical basin. Thus
boundary value problems A and B can always be solved
in the general case.

¢. General eastern boundary condition
As shown in section 4, strictly requiring
u=0

at the eastern boundary introduces some kind of sin-
gularity in the solution, such as

(i) both v and q are infinite near the eastern bound-
ary;

(ii) the upper surface density distribution is sub-
ject to a consistent condition (4.34).

These features seem unrealistic and thus general eastern
boundary conditions may be useful for a more realistic
model of the ideal-fluid thermocline. Since an exact
formulation of the general eastern boundary condition
requires detailed analysis of some possible mixing/fric-
tion mechanism, we will tentatively formulate our
eastern boundary condition as follows:

The general eastern boundary condition: the strati-
fication at the eastern wall is

'Be b s S t]
B‘"=[ a(y P, < psy) 6.0
B%(p), o= pp(y)
such that
0
f udz=0 (6.2)
2p

where z, is the depth of the p;-isopycnal, B¢ and B,*
are continuous at p = p,. So far we have not studied
the structure of such an eastern boundary current which
can set up the stratification described above. This
problem calls for close investigation of the eastern
boundary currents.

We specify the water property along the entire east-
ern boundary regardless of whether the water is coming
or going out of the boundary. This assumption implies
potential mixing within the eastern boundary current
which can change the water properties.

For the general eastern boundary condition, (2.37)
has to be modified
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+ f ‘ B, (pp)dpp/dx-dx, (6.3)

where the second term on the left-hand-side is a con-
tribution from the general eastern boundary condition.

Now boundary value problem B can be carried out
the same way as above and boundary value problem
A has the same formulae as above.

Obviously, all these singular features of the solutions,
i.e., unbound meridional velocity and potential vor-
ticity at the eastern boundary and the consistent con-
straint on the upper surface density, do not appear for
general eastern boundary conditions. In a sense, we
have removed all the singularities from the interior to
the eastern boundary current. Admittedly, different
eastern boundary conditions will lead to different in-
terior solutions. Further study is vitally important in
order to understand the eastern boundary current
structure and its influence over the interior dynamics
(Huang, 1988b).

d. Mixed layer assumed passive

A passive mixed layer assumption means the mixed
layer pumps water down with given density distribution
in the subtropical gyre and picks up water in the sub-
polar gyre regardless of the water temperature. There
is no interaction between the mixed layer and the water
below otherwise. Coupling the model to include con-
vective adjustment in a subpolar gyre is discussed in a
separate paper (Huang, 1988a), and a model including
a mixed layer is under study currently.

e. Inversion problems for subtropical/subpolar gyres

As pointed out by HH, the ideal-fluid thermocline
equation is a low order (non-strict) hyperbolic system.
Therefore, information can propagate upstream or
downstream along streamlines. Apparently, the surface
density p; in the subpolar basin can be measured easily,
thus we may try 1o use p,; and w, as given upper bound-
ary conditions and apply boundary value problem A
or B for a subpolar basin. Namely, assume w,, p; and
q = q(B, p) for p > p, (the upper surface density at the
northern boundary of the subpolar gyre) are given, we
may calculate g = g(B, p) for p < p, by tracing the
streamline backward.

Similarly, assume that ¢(B, p) is given for all water
particles in the subtropical gyre, boundary value prob-
lem C can be solved and p; is found as the “outcrop-
ping” isopycnal by tracing backward along streamlines.

Although this kind of inverse problem seems phys-
ically strange, it is an inescapable mathematical result
of the simplification implied by the basic assumption
with the ideal-fluid thermocline equation. The useful-
ness of this inversion process needs further study.
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7. Conclusion

The major new contribution in this study is for-
mulating and solving boundary value problems for the
ideal-fluid thermocline equation. Using a lemma
proved by HH, a two-gyre basin is divided into two
regions with different signs of Ekman pumping velocity
and different boundary value problems have been for-
mulated accordingly. Therefore, the problem of solving
the nonlinear ideal-fluid thermocline equation is re-
duced to repeatedly integrating a second-order ordinary
differential equation with free boundary conditions.

These boundary value problems are deterministic, thus

for reasonably given boundary conditions, they have
sound solutions. _

Traditionally, the homogeneous or reduced gravity
wind-driven ocean circulation models totally ignore
the influence of the western boundary current. The
western boundary current is at most a passive part of
the general circulation which can be solved and patched
together with the interior solution affer the entire in-
terior solution has been determined. Consequently, the
dynamic role of the western boundary was largely un-
touched.

Our model also excludes the western boundary cur-
rent. However, through setting up the density and po-
tential vorticity relation at the western boundary out-
flow region, the western boundary current implicitly
plays a vitally important role in setting up the baroclinic
structure of the wind-driven circulation.

Although our model uses the ideal-fluid assumption,
the dynamic role of eddy mixing is implicitly included
in the model through specification of potential vorticity
for the unventilated thermocline.

Likewise, the thermohaline circulation should play
a similar role in determining the baroclinic modes of
the circulation through setting up the stratification of
the abyssal water.

Since the ideal-fluid thermocline equation uses linear
momentum equations in the horizontal direction, the
vertically-integrated circulation is determined by the
classical Sverdrup dynamics as in a homogeneous
ocean circulation model. Our model gives concrete
ways of determining the barotropic and baroclinic
modes of the circulation. In brief, we have shown sys-
tematically how the boundary conditions, i.c., the Ek-
man pumping velocity, the upper surface density, the
potential vorticity of the shallow and deep unventilated
thermocline, and the stratification of the stagnant
abyssal water, determine the entire solution.

For a simple case with constant potential vorticity
for the deep unventilated thermocline, the free bound-
ary value problems in the subtropical gyre reduce to
fixed boundary value problems of the same second-
order ordinary differential equation, while in the sub-
polar gyre the problem results in a closed analytical
solution. We have shown one example with a two-gyre
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circulation. Our goal here is to demonstrate the main
idea, thus a very coarse grid-mesh and simple second-
order accuracy scheme have been used. Some better
numerical scheme and fine grids could be used in a
further study to examine the well-posedness of these
boundary value problems.

We have shown the influences of all boundary con-
ditions only in a very abstract way of formulating the
boundary value problems. The detailed study of these
effects is very important for understanding the general
circulation. This study is currently underway and will
be published subsequently.

Our study has shown that a no-flux condition at the
eastern boundary is associated with some intrinsic sin-
gularity. Although we have shown one consistent so-
lution with this kind of boundary condition, further
study seems very important to reveal the dynamic role
of the general eastern boundary condition.

Admittedly, the ideal-fluid thermocline is a highly
idealized theory; many important processes have been
omitted, such as mixing in the interior, coupling with
the western boundary current, coupling with the ther-
mohaline circulation, and coupling with the mixed
layer. Understandably, the ideal-fluid thermocline
cannot be solved in isolation. In our model the effects
of these high order dynamical processes have been pa-
rameterized as some fixed boundary conditions at all
these boundaries. Further study is required to modify
the ideal-fluid thermocline theory in order to provide
a more realistic solution in a closed basin.
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