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ABSTRACT

Scaling analysis of the oceanic thermohaline circulation has been done under two types of surface boundary
conditions: (i) Under ‘‘relaxation’’ conditions (sea surface temperature and salinity are relaxed to prescribed
values), there is a two-thirds power law dependence of the meridional overturning (and the poleward heat
transport) on the diapycnal diffusivity. For any given external forcing, there is only one equilibrium state for
the thermohaline circulation. (ii) Under ‘‘mixed’’ boundary conditions (temperature is relaxed to prescribed
values and a virtual salt flux condition is used for salinity), multiple equilibria become possible. For a given
thermal forcing, the existence of multiple equilibria depends on the relative contributions of diapycnal diffusivity
and the hydrologic forcing: for each diapycnal diffusivity K, there is a threshold freshwater flux Ec 5 CK 2/3 (C
is a constant) below which three modes are possible with one stable thermal mode, one unstable thermal mode,
and a stable haline mode and above which only one stable haline mode can exist.

Numerical experiments are also implemented to test the above scaling arguments. Consistent results have
been obtained under the two types of boundary conditions. The relationship derived here focuses attention on
the need to better understand both the diapycnal mixing in the ocean and the strength of the hydrologic forcing
at its surface.

1. Introduction

The thermohaline circulation plays an important role
in poleward heat transport in the ocean and is thus of
primary interest to climate studies. Stommel (1961) first
recognized the possibility of multiple solutions of the
thermohaline circulation. He found that under certain
conditions, there could be three states possible: 1) a
stable thermal mode with a relatively fast circulation,
2) a stable haline mode with a relatively slow circula-
tion, and 3) an unstable thermal mode. Bryan (1986)
proved the existence of multiple equilibria of the ther-
mohaline circulation in a numerical model.

The thermohaline circulation is forced from the sur-
face, thus the upper boundary conditions for tempera-
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ture and salinity are of significance. Since there is a
strong feedback between the atmospheric temperature
and sea surface temperature (SST), a relaxation con-
dition for the SST has been widely used (Haney 1971):

]T
K 5 G(T* 2 T ), (1)s]z

where T* is the ‘‘apparent atmospheric temperature’’
determined by the sum of solar insolation, back radia-
tion, latent and sensible heat fluxes; Ts is SST; and G
is inverse of the relaxation time. The strong feedback
mechanism allows the SST to be maintained around the
prescribed T*.

For salinity, there are several choices. First we can
relax the sea surface salinity to a prescribed distribution,
analogous to temperature:

]S
K 5 G (S* 2 S ). (2)S s]z

This condition is very easy to use, but it is hardly jus-
tified physically because there is no such feedback be-
tween S* and Ss. Instead, the salinity is related to the
SST, which affects the evaporation rate at the sea sur-
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face. The second way is to use a virtual salt flux con-
dition for salinity:

]S
K 5 (e 2 p)S , (3)

]z

where e 2 p is evaporation minus precipitation, in-
cluding runoff, and is the averaged salinity at theS
surface. This condition is an approximation to the fresh-
water flux condition, and increasing numbers of ocean
models use this boundary condition for salinity in stud-
ies of the thermohaline circulation. Huang (1993) pro-
posed a more realistic upper boundary condition, the
so-called ‘‘natural’’ boundary condition on salinity. Due
to the restraint of the free surface requirement, this kind
of boundary condition is not discussed here, but in terms
of the scaling argument below it should be similar to
the virtual salt flux case. For simplicity, wind stress
effects are neglected in the scaling argument and in most
of the numerical experiments. We call the combination
of (1) and (2) ‘‘relaxation’’ boundary conditions and,
in comparison, (1) and (3) are called ‘‘mixed’’ boundary
conditions.

The importance of the diapycnal diffusivity to the
thermohaline circulation under the relaxation boundary
conditions has been discussed and widely examined in
numerical models. Welander (1971) derived a scaling
relationship for the zonal flow based on a vertical ad-
vective–diffusive balance and the thermal wind relation.
Bryan (1987) postulated this to hold for the zonally
averaged meridional flow as well; that is, the meridional
overturning should have a two-thirds power law depen-
dence on the diapycnal diffusivity, even though he only
observed an approximate one-third power law in his
numerical experiments. Marotzke (1997) restrained the
diapycnal diffusivity to act only at lateral boundaries
and in convection regions and found that, when the
vertical diffusivity K is below 30 cm2 s21, the meridional
overturning strength is proportional to K 2/3. He offered
a theory to get the relation between the north–south
density difference and the east–west density difference,
and the latter is directly related to the shear of merid-
ional flow and thus the thermohaline circulation. The
relation between zonal and meridional density gradients
can also be found in Hovine and Fichefet (1994).

The thermohaline circulation under mixed boundary
conditions has also been investigated (Weaver et al.
1993; Weaver and Hughes 1992; Rahmstorf et al. 1996).
Weaver et al. (1993) examined the effect of freshwater
fluxes on the stability and variability of the thermohaline
circulation. They found that the freshwater forcing is
the dominant factor in determining stability and internal
variability. Increasing the relative importance of the
freshwater flux versus thermal forcing caused, in turn,
one stable steady state of the model, two stable states,
one stable and one unstable equilibrium, or no stable
steady states at all. In addition, Huang and Chou (1994)
studied the parameter sensitivity of the saline circulation

forced by freshwater flux alone. When the freshwater
flux is increased from 0.01 to 1 m yr21 with other pa-
rameters fixed, the system evolves from a steady state
with no oscillations to a state of periodic oscillation
whose frequency increases almost linearly with the am-
plitude of the freshwater flux. On the other hand, when
the freshwater flux is fixed and the vertical mixing co-
efficient is increased from 0.5 to 2.5 cm2 s21, the system
evolves from a steady state to a state of single-period
oscillation, to a chaotic state, to a single period state,
and finally, when the vertical mixing is larger than 2.0
cm2 s21, to another chaotic state.

These studies suggest that the freshwater flux and the
diapycnal diffusivity are very important parameters to
the thermohaline circulation, yet both are poorly known
from observations. In the following scaling analysis and
numerical experiments we attempt to understand the
sensitivity of the thermohaline circulation to these two
parameters. In section 2, the scaling analyses of the
thermohaline circulation under two different kinds of
upper boundary conditions are provided. In section 3
numerical experiments are implemented to compare
with the scaling results. Section 4 contains a summary
and discussion.

2. Scaling analysis

a. Equations

Similar to Welander (1971), we start from the fol-
lowing equations:

(i) the incompressibility condition

]u ]y ]w
1 1 5 0, (4)

]x ]y ]z

(ii) the thermal wind relation

]u g
5 2 k 3 =r, (5)

]z r f0

(iii) the vertical advective–diffusive balance of den-
sity

2]r ] r
w 5 K , (6)

2]z ]z

where u 5 ui 1 yj and w are the horizontal and vertical
components of velocity respectively, f is the Coriolis
parameter, r is the density, K is the assumed uniform
diapycnal diffusivity of density, and g is the gravita-
tional acceleration.

Assumption (i) is used widely in oceanic theoretical
and numerical studies, and (ii) comes from the geo-
strophic and hydrostatic relations, which are true for the
large-scale thermohaline circulation. Assumption (iii)
has been invoked by Munk (1966) and justified by the
correspondence of observed vertical profiles of salinity
and temperature to the model (depth between 1 and 5
km); in addition, Munk and Wunsch (1998, hereafter
MW) have revisited this issue. This assumption was
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used in the scaling argument of Welander (1971) and
Bryan (1987).

From the above equations, we obtain the scaling re-
lations:

UD 5 WL,

Dr f UL
5 ,

r gD0

K
D 5 , (7)

W

where U(L) and W(D) are horizontal and vertical ve-
locity (length) scales, respectively, and Dr is the north–
south density difference at the ocean surface.

From these we can derive the vertical length scale in
terms of Dr/r:

1/3
2f KL

D 5 , (8)[ ]gDr/r0

which is actually the scale thickness of the thermocline
(Samelson and Vallis 1997).

Thus, the strength of the meridional overturning is

1/3
2 4gDrK L

2M 5 UDL 5 WL 5 . (9)[ ]r f0

Note that M is determined by the meridional velocity
y , which is related to the east–west density difference,
rather than the north–south density difference. Since in
the thermocline, the velocity components u and y are
of the same order and u is determined by the north–
south density difference, we infer that y has the same
order of magnitude. Marotzke (1997) provides a dis-
cussion, in which the east–west density difference is
closely related to the north–south surface density dif-
ference. However, he assumed vertical mixing only oc-
curs in the lateral boundary regions, which is different
from the uniform mixing assumed here. To the lowest
order, we can assume that (9) is an acceptable estimate
for the strength of the meridional overturning cell.

The poleward heat transport is very important for
climate studies. This can be scaled as follows:

Q 5 C0r0cpMDT } K 2/3, (10)

where cp is the specific heat under constant pressure and
the north–south temperature difference DT is used to
represent the temperature difference between the deep
flow and the surface return flow. We use both maximum
M and DT to estimate Q; however, in the real ocean (a
single-hemisphere basin), maximum M occurs with min-
imum DT and maximum DT lies in the minimum M
region. As a result, the maximum poleward heat trans-
port is found in midlatitudes. Thus, a constant factor C0

is introduced here to represent this effect. For the sim-
plest case, we can assume that Q reaches its maximum
at midlatitudes where both DT and M are assumed half

of their maximum values; thus we could expect an ap-
proximate value of C0 5 ¼.

Furthermore, assuming a linear equation of state

r 5 r0(1 2 aT 1 bS), (11)

then the ratio Dr/r0 in (8) and (9) can be replaced by

Dr/r0 5 |aDT 2 bDS|, (12)

where DT and DS are north–south temperature and sa-
linity differences.

b. Relaxation boundary conditions

In most cases using relaxation boundary conditions
in the literature, both G and Gs are quite large so that
DT and DS can be approximated by DT* and DS*. This
assumption will be used in the following analysis.

We find it useful to define the horizontal density ratio:

bDS
R 5 . (13)

aDT

In present-day oceans, the water is cold and fresh in
polar regions, and warm and salty in equatorial regions;
thus temperature and salinity have opposite effects on
the surface density difference. When R , 1, the tem-
perature dominates the density difference, and the dens-
est water is formed and sinks in the polar regions. The
thermohaline circulation is in the ‘‘thermal’’ mode. In
contrast, when R . 1, the salinity dominates the density
difference, and the densest water is formed and sinks
in the equatorial regions. This thermohaline circulation
is in the ‘‘haline’’ mode.

Using (13), the depth scale and meridional overturn-
ing scalings become

1/3
2f KL

D 5 , (14)[ ]gaDT |R 2 1|

1/3
2 4gaDT |R 2 1|K L

M 5 . (15)[ ]f

With the relaxation boundary conditions, DT and DS
are very close to the constant DT* and DS*. As a result,
the north–south density difference is nearly fixed, so
there is only one thermohaline circulation mode. The
above power laws have been discussed previously (We-
lander 1971; Bryan 1987) and are reproduced here as
a first step for the case under mixed boundary condi-
tions. In addition, the above conclusions will be ex-
amined in a numerical model in section 3b.

c. Mixed boundary conditions

1) NORTH–SOUTH SALINITY DIFFERENCE

Under mixed boundary conditions (1) and (3), the
north–south salinity difference is no longer fixed; in-
stead, it becomes part of the solution we are pursuing.



JUNE 1999 1099Z H A N G E T A L .

Consider a two-box model of the ocean (Stommel
1961), in which a polar box and an equatorial box are
well mixed and connected by pipes at the top and the
bottom. Defining S e and S p as salinities in the equatorial
and polar boxes respectively, the salt conservation equa-
tions are

E S M˙ e 0S 5 2 (S 2 S ), (16)e e p2H HL /2
E S Mp˙ 0S 5 1 (S 2 S ), (17)p e p2H HL /2

where E e, E p are the evaporation minus precipitation
rates in the equatorial and polar box, L2 is the horizontal
area of the ocean basin, M0 is the volume flux between
the two boxes, H is the depth of the ocean, S is the
averaged salinity over the whole basin, and an overdot
denotes the time derivative.

From the above two equations, we can derive an equa-
tion governing evolution of the salinity difference, DS 1

5 S e 2 S p,

E 2 E4 Me p 0˙DS 5 S 2 DS . (18)1 121 2H 4 L

To get a more reasonable estimate of the north–south
salinity difference in the scaling analysis, we make the
following assumptions:

DS 5 2DS , (19)1

E 2 E 5 2(E 2 E ), (20)e p e p

M 5 2M , (21)0

where DS, Ee 2 Ep, and M are used to represent the
corresponding quantities in more complicated models,
like numerical models, rather than that from a two-box
model that is strongly averaged. The above extension
from a box model to a more realistic model is based on
simple linear assumptions, which may differ from the
real situation, but as a scaling argument, we believe it
reflects the lowest order approximation. Thus, DS (Ee

2 Ep) is the salinity (freshwater) difference between
northern and southern regions, and M is the maximum
of the meridional overturning. For convenience, we in-
troduce

E 5 (Ee 2 Ep)/2 (22)

to represent the magnitude of freshwater forcing. Then
we have

2 M˙DS 5 ES 2 DS . (23)
21 2H L

For a steady state, we obtain
2EL

DS 5 S0 M

SE
5

W

SED
5 . (24)

K

A similar scaling result has been obtained in Huang and
Chou (1994). We can see that DS0 is proportional to the
magnitude of the freshwater forcing and inversely pro-
portional to the strength of the meridional overturning
circulation rate.

2) SCALING ANALYSIS AND SOLUTIONS

With DS0 given in (24), we obtain

Dr bSED
5 aDT 2 . (25)) )r K0

From here we can conclude that, when

bSED
aDT . , (26)

K

the density difference is thermally dominant. Alterna-
tively, when the thermal effect is less than the saline
effect, the density difference is salt dominant.

Substituting (25) into (8), we obtain a quartic equation
for D

2f L K bSED
5 aDT 2 . (27)

3 ) )gD K

Since the salinity difference is now related to the vertical
length scale, the relation between the depth scale and
the external parameters becomes more complicated.

Introducing the following nondimensional variables,

32 3f L bS E
F 5 , (28)

21 2gaDT aDT K

bSED
R 5 , (29)

aDTK

Eq. (27) becomes

|R4 2 R3| 5 F. (30)

Using (24), R can be written as

bDS0R 5 , (31)
aDT

which is the horizontal density ratio representing the
relative contributions of salt and heat to the surface
density. When R , 1, the thermal forcing dominates,
and we have thermal modes; on the other hand, when
R . 1, the freshwater forcing dominates, and we obtain
a haline mode.

In the limits of R K 1, Eq. (30) reduces to the K 2/3

power law dependence of meridional overturning on
diapycnal diffusivity found under the relaxation bound-
ary conditions. If R k 1, the Huang and Chou (1994)
K 1/2 power law dependence of meridional overturning
upon diapycnal diffusivity for the saline circulation
(freshwater forcing only) is recovered.

The general solution of Eq. (30) can be obtained
through the following two cases:
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FIG. 1. Critical curve Fc 5 27/256 with the parameters as a 5 2.0
3 1024 K21, b 5 8.0 3 1024 psu21, DT 5 20 K, S 5 35 psu, f 5
1.0 3 1024 s21, L 5 6.0 3 106 m, and g 5 9.8 m2 s21. In the region
below the critical curve, three modes are possible: two thermal modes
and one haline mode, while in the region above it, only one haline
mode can exist. FIG. 2. Solutions of meridional overturning rate under mixed

boundary conditions for (a) fixed K 5 1.0 cm2 s21 with changing E
and (b) fixed E 5 1 m yr21 with changing K. The upper solid line
corresponds to the stable thermal mode, while the lower solid line is
the solution for the haline mode, and the dotted line represents the
result for the unstable thermal mode. For K 5 1 cm2 s21, there is a
bifurcation point at about E 5 1 m yr21, beyond which only one
haline mode is possible. The parameters are defined in Fig. 1.

(i) Thermal mode(s) equation (R , 1)

R4 2 R3 1 F 5 0. (32)

(ii) Haline mode(s) equation (R . 1)

R4 2 R3 2 F 5 0. (33)

The solution(s) can be found in the appendix.
The nature of the solution to Eq. (30) depends on the

size of F relative to a critical parameter:
33 27

F 5 5 . (34)c 44 256

When F , Fc, two thermal modes and one haline mode
are possible; when F . Fc, only one haline mode can
exist.

The above solutions are based on R, and then we can
calculate the meridional overturning by (9) and the pole-
ward heat transport by (10).

Assuming the thermal forcing is fixed (DT 5 const),
(34) implies a critical value for the freshwater forcing:

27gaDT aDT
2/33E (K ) 5 K (35)c 2! 256 f L bS

2/35 CK . (36)

Thus, for a given value of K, there is an upper limit of
freshwater forcing Ec(K) beyond which no thermal
mode can exist. Below this value two thermal modes,
in addition to the haline mode, are possible for all given
conditions.

The reason for such an upper limit on the thermal
mode can be understood as follows. The freshwater forc-
ing acts as a brake on the thermally driven overturning

circulation. For example, with E . 0, we know the
maximum meridional overturning is smaller than that
without freshwater forcing, that is,

1/3
4 2gaDTL K

M , 5 M , (37)Th[ ]f

where MTh is the meridional overturning due to thermal
forcing alone. Using (24),

2L S
DS 5 E,0 M

2L S
. E. (38)

MTh

For a given thermal forcing DT, DS0 increases with
larger E; thus, when E is large enough, DS0 can over-
come the density effect of DT, making the thermal mode
impossible.

We plot the critical line (36) in Fig. 1. In the region
below the critical curve three modes are possible: two
thermal modes and one haline mode, while in the region
above it only one haline mode can exist.

Also, we plot the dependence of the meridional over-
turning on E and K, respectively (Fig. 2). The upper
solid line corresponds to the stable thermal mode, while
the lower solid line is the solution for the haline mode,
and the dotted line represents the result for the unstable
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thermal mode. For K 5 1 cm2 s21 (Fig. 2), there is a
bifurcation point at about E 5 1 m yr21 beyond which
only one haline mode is possible.

The above arguments are based on the assumption of
a specified equator–pole temperature difference. How-
ever, since the atmosphere and oceans constitute a cou-
pled system, the temperature difference DT could
change. From (35), a change in DT will lead to a dif-
ferent critical relation between diapycnal diffusivity and
hydrologic forcing. Past climatic states of the earth may
have had significantly different DT and E, and both must
be considered in evaluating the possible modes of the
thermohaline circulation.

3) STABILITY ANALYSIS

Next we analyze the stability of the solutions obtained
above. We separate DS into two parts:

DS 5 DS0 1 DS9, (39)

where DS0 is the steady solution and DS9 is a small
perturbation. Similarly, we assume the meridional over-
turning will change correspondingly:

M 5 M0 1 M9. (40)

From Eq. (9), we derive

M9 1 bDS9
5 2 . (41)

M 3 aDT 2 bDS0 0

By substituting (39) and (41) into (23), we obtain

DṠ9 5 ADS9, (42)

where

2(4R 2 3) M0A 5 . (43)
23(1 2 R) HL

For the thermal mode with ¾ , R , 1, A . 0, and
thus this mode is unstable. In comparison, for the other
thermal mode, which has R , ¾, and for the haline
mode, which corresponds to R . 1, we have A , 0, so
both modes are stable solutions.

4) APPLICATION TO NORTH ATLANTIC AND NORTH

PACIFIC

The above scaling argument is based upon a square
basin. In fact, for a rectangular basin (i.e, Lx ± Ly), we
can replace the horizontal area L2 by LxLy.

Given the uncertainty associated with both the dia-
pycnal diffusivity and e 2 p over the oceans, it is un-
realistic to compare the current scaling argument with
the real oceans in any detail. However, a rough estimate
can be made based on presently available information.
A map of evaporation minus precipitation over the glob-
al ocean is plotted in Fig. 2 of Schmitt (1995) and is
used for the estimate of e 2 p. Here we focus on the
Northern Hemisphere where the North Atlantic and

North Pacific are isolated and most appropriate for our
scaling argument. Due to the effect of the intertropical
convergence zone, there is more precipitation than evap-
oration in the equatorial region, thus the maximum e 2
p lies near 158N for the North Atlantic and 208N for
the North Pacific. The minimum e 2 p (or maximum
p 2 e) lies in the polar region of both oceans, close to
608N. As an approximation, we take Ly 5 5 3 106 m
for both oceans and Lx 5 6 3 106 m for North Atlantic
and Lx 5 12 3 106 m for North Pacific. Then we es-
timate DT and S for both oceans from the Levitus (1982)
climatology between the maximum and minimum e 2
p regions, respectively. We obtain approximate values
of DT 5 188C, S 5 36 psu for the North Atlantic and
DT 5 208C, S 5 34 psu for the North Pacific.

Compared to e 2 p, the diapycnal diffusivity is per-
haps even less well known. Recent observations indicate
strong spatial variability of diapycnal mixing in the
oceans. Ledwell et al. (1993) found that the diapycnal
diffusivity is about 0.15 cm2 s21 in the upper thermo-
cline in a tracer release experiment, while the diapycnal
diffusivity is much larger close to rough topography in
the abyss (approaches 100 cm2 s21: Toole et al. 1994;
Polzin et al. 1997). The basin-scale budget estimates
require an averaged diapycnal diffusivity of about 1 cm2

s21 (Munk 1966; MW). For simplicity, we adopt the
canonical value of K 5 1 cm2 s21 for both basins in the
scaling estimate here; however, the uncertainty of this
value should be emphasized.

Using the above parameters, we estimate the critical
evaporation minus precipitation rate as

EcNA 5 0.92 m yr21 (44)

for the North Atlantic Ocean and

EcNP 5 0.89 m yr21 (45)

for the North Pacific Ocean. The critical values of fresh-
water forcing are surprisingly close for both oceans.

From the Schmitt (1995) global ocean e 2 p map,
we find ENA is about 0.75 m yr21 for the North Atlantic
Ocean and ENP is about 1.05 m yr21 for the North Pacific
Ocean. Thus, the estimated freshwater forcing is much
stronger in the North Pacific than in the North Atlantic.
Since ENA , EcNA, the scales suggest that the North
Atlantic Ocean is in the multiple equilibria regime. Pres-
ently, the North Atlantic Deep Water (NADW) is formed
in the polar region and exported equatorward, charac-
teristic of a thermal mode. In contrast, for the North
Pacific, since ENP . EcNP, only the haline mode is pos-
sible by the scaling argument. This is in line with the
lack of deep-water formation in the Pacific polar re-
gions. The results are summarized in Table 1.

Warren (1983) noted the effects of low sea surface
temperature on the diminution of evaporation and sug-
gests that this causes the lack of bottom-water formation
in the Pacific compared to the North Atlantic. Here we
find it is also possible that the larger gradient of e 2 p
in the North Pacific inhibits a thermal-mode overturning
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TABLE 1. Comparison of the North Atlantic and North Pacific
Oceans.

North Atlantic North Pacific

Lx (106 m)
DT (8C)
S (psu)
K (cm2 s21)

6
18
36

1

12
20
34

1

Ec (m yr21)
E (m yr21)

0.92
0.75

0.89
1.05

Mode Multiple Haline

cell. The stronger freshwater forcing and lower critical
E value for the North Pacific both favor the single haline
mode. Compared to the North Atlantic Ocean, even
though the higher north–south temperature gradient and
lower mean salinity act to increase the critical E value,
the large size in the zonal dimension surpasses the above
effects and leads to a smaller critical value in the North
Pacific than the North Atlantic. Thus, it is easier to enter
the haline mode even with the same freshwater forcing.
In addition, there could well be significant differences
in diapycnal mixing rates in the two basins due to vary-
ing bathymetry and tidal forcing (Polzin et al. 1997;
MW).

The individual oceans, however, are not isolated sys-
tems; moreover there is interaction between the oceans
and the atmosphere. As a result, there is strong feedback
between DT, E, and the strength of the thermohaline
circulation. Thus, parameters DT, E, etc. are not givens,
but rather are part of the solution of the more compli-
cated coupled system. Hopefully, the simple scaling ar-
gument given here provides the lowest order estimate
of the behavior of the thermohaline circulation. Based
upon the rough observations available, it is consistent
with the current oceanic situation.

5) COMPARISON WITH BOX MODEL RESULTS

Marotzke (1990) used a two-box model similar to
Stommel (1961), in which he defined the following non-
dimensional variables:

bHSF 5 ,M 2K (aDT )M

bDS
R 5 ,M aDT

where HS is the equivalent salt flux, and KM is the linear
proportionality coefficient between the interbox flow
and the density difference. He found for FM , 0.25,
three steady states exist, including one haline mode and
two thermal modes. For FM . 0.25, only one haline
mode is possible. In addition, for RM , 0.5 or RM .
1.0, the solution is stable, and for 0.5 , RM , 1.0, the
solution is unstable. Therefore, in the multiple equilibria
region (FM , 0.25), there is one stable thermal mode,

one unstable thermal mode, and one stable haline mode,
and when FM . 0.25, there is only one stable haline
mode.

Huang et al. (1992) studied the structure and stability
of the multiple equilibria of the thermohaline circulation
using 2 3 2 and 3 3 2 box models. They defined the
following nondimensional number

G(e 2 p)
p 5 , (46)

r c0 p

where G is the Rayleigh relaxation coefficient. In the 2
3 2 box model, for 0 , p , pc, three solutions exist:
one stable thermal mode, one unstable thermal mode,
and one stable haline mode; for p . pc, only one stable
haline mode exists. Here pc is the nondimensional crit-
ical freshwater forcing. Note the similarity between the
upper panel of Fig. 2 in this article and Fig. 5 in Huang
et al (1992).

Our scaling analysis is consistent with the above box
models in the following aspects: under certain condi-
tions, three solutions are possible, which include one
stable thermal mode, one unstable thermal mode, and
one stable haline mode; otherwise only one stable haline
mode is possible. Compared to Marotzke (1990), the
criteria on R (5bDS0/aDT) for the stability is different,
we get an unstable solution for 0.75 , R , 1 through
the scaling argument, which corresponds to the range
0.5 , R , 1 in Marotzke (1990). As in Marotzke (1990)
and Huang et al. (1992), we obtain an upper limit of
the freshwater forcing (or equivalent salt flux) beyond
which no steady thermal mode is found.

In contrast to the box models, we include the Coriolis
parameter, basin dimensions, and more importantly the
two uncertain variables: diapycnal diffusivity and fresh-
water forcing. For a given set of parameters, the scaling
analysis permits an estimate of how the thermohaline
circulation will behave, which is unattainable with the
box models. The role of freshwater forcing has been
studied extensively in the box models, but the effect of
diapycnal diffusivity cannot be examined due to the
strong numerical diffusion intrinsic to these models.

3. Numerical experiments

a. Model description

Experiments utilizing the GFDL MOM2 were con-
ducted to explore the validity of the scaling arguments
in section 2. The details of the model can be found in
Bryan (1969) and Pacanowski (1995). The special fea-
tures of these experiments are as follows.

The model domain is a sector basin of 608 3 608,
and the horizontal resolution is 3.758. There are 15 lev-
els vertically, with thickness from 50 m at the top to
500 m at the bottom; the total depth is 4500 m.

The horizontal and vertical momentum viscosity co-
efficients are Ah 5 1.0 3 106 m2 s21 and Ay 5 20 cm2

s21, respectively. For the tracer equations, the eddy
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FIG. 3. The prescribed SST and SSS fields for the experiments
under relaxation boundary conditions. Here we have approximately
DT 5 20 K and DS 5 2 psu.

FIG. 4. Meridional overturning rate from scaling analysis and nu-
merical experiments under relaxation boundary conditions. The ‘‘3’’
and ‘‘V’’ represent the numerical results without and with wind stress,
respectively. The solid line represents the scaling argument results,
where the meridional overturning rate is proportional to the two-thirds
power law of diapycnal diffusivity, with DS 5 2 psu and other pa-
rameters the same as in Fig. 1.transport parameterization of Gent and McWilliams

(1990) and isopycnal/diapycnal mixing is used, and no
background horizontal diffusion is needed. We take KISO

5 KITD 5 500 m2 s21, where KISO is the isopycnal dif-
fusion coefficient and KITD is the downgradient diffu-
sivity of the isopycnal thickness. Diapycnal (vertical)
diffusivity is the key factor in the experiments, and is
varied from 0.1 to 5 cm2 s21.

b. Relaxation boundary conditions

The first layer temperature and salinity are relaxed to
the SST and SSS climatology (Levitus 1982) with a
relaxation time of 30 days (see Fig. 3). Two group of
experiments were implemented, one group without any
wind stress and in the other the zonally averaged annual
climatological surface wind stress of Hellerman and Ro-
senstein (1983) is used. In both groups of experiments,
diapycnal diffusivities were 0.1, 0.25, 0.5, 1.0, 2.0, and
5.0 cm2 s21 with all other parameters fixed. The 0.1 cm2

s21 experiments were run for 12 000 years, the 5.0 cm2

s21 experiments are run for 4000 yr, and all others 8000
years. Equilibria were reached in each experiment(with
the surface averaged upward heat flux oscillating less
than about 0.05 W m22).

The experiments with and without wind stress are
consistent with the scaling argument (Fig. 4). When the
diapycnal diffusivity is very small, wind stress plays an
increasingly important role in the thermohaline circu-
lation since the penetration depth forced by the wind
stress becomes greater than that caused by buoyancy
effects. In contrast, when the diapycnal diffusivity is as
large as 0.5 cm2 s21, the wind stress makes almost no
difference to the thermohaline circulation under the re-
laxation boundary conditions.

When Bryan (1987) examined the sensitivity of the

thermohaline circulation to the vertical diffusivity, he
derived the two-thirds power law through scaling ar-
guments, but only got an approximate one-third power
law dependence in the numerical experiments. One rea-
son is that the experiments were run only to 1200 years,
which, for most of the experiments, is not long enough
to reach equilibrium. In addition, the diapycnal mixing
due to the action of the horizontal diffusivity on sloping
isopycnals could also affect the thermohaline circula-
tion. Wright and Stocker (1992) used a two-dimensional
(vertical–meridional) model to examine the sensitivity
of the thermohaline circulation to the vertical diffusiv-
ity. For the North Atlantic Ocean, they found M } K 1/3

with wind stress and M } K 1/2 without wind stress. Their
model applied to the Pacific and the Indian Oceans ob-
tained M } K 2/3. Marotzke (1997) restricted all vertical
mixing to the boundaries and found M } K 2/3. Here we
obtain the two-thirds power law dependence in a three-
dimensional OGCM with uniform vertical mixing.

The poleward heat transports in the above numerical
experiments are plotted in Fig. 5. Note that a least square
method fitting of the numerical experiments gives

1
C 5 , (47)0 3

which is used in the scaling argument given in (10). We
can see that an approximate two-thirds power law de-
pendence is obtained, as given in the scaling argument,
for the case without wind stress. For the case with wind
stress, especially in the low diffusivity experiments, the
Ekman cells, driven by the wind stress, can carry a
portion of the total poleward heat flux. As a result, the
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FIG. 5. Poleward heat transport from scaling analysis and numerical
experiments under relaxation boundary conditions. The ‘‘3’’ and
‘‘V’’ represent the numerical results without and with wind stress,
respectively. The solid line represents the scaling argument results,
where the poleward heat transport is proportional to the two-thirds
power law of diapycnal diffusivity and with parameters the same as
in Fig. 4.

experimental results deviate from the two-thirds power.
Note, however, that the two-thirds power law in the
poleward heat transport is not as close as in the merid-
ional overturning.

One significant difference between the model for-
mulation here and the earlier work (Bryan 1987; Wright
and Stocker 1992; Marotzke 1997) is the inclusion of
the Gent and McWilliams (1990) isopycnal tracer mix-
ing scheme, which eliminates the false diapycnal dif-
fusivities caused by horizontal diffusion, especially in
places where the slope of the isopycnals is large, like
western boundary current and convection regions. We
believe this explains why the meridional overturning so
closely obeys the two-thirds power law dependence on
the vertical diffusivity derived in the scaling analysis.

c. Mixed boundary conditions

Here we use a relaxation condition for temperature
(same as in the upper panel of Fig. 3) and a virtual salt
flux boundary condition for the salinity with a simple
‘‘linear’’ profile of evaporation minus precipitation. No
wind stress is applied. The freshwater forcing is defined
for a basin confined between the equator f 5 0 and a
northern boundary f 5 f n by the expression

W 2f0e 2 p 5 1 2 , (48)1 2cosf fn

then the maximum and minimum of e 2 p are W0 (at
f 5 0) and 22W0 (at f 5 f n 5 608), respectively;
therefore, we have

E 5 1.5W0 (49)

to represent the magnitude of the freshwater forcing, as
defined in the scaling argument. This E will be used in
the scaling estimate for comparison with the numerical
experiments. When E . 0, the freshwater forcing op-
poses the thermal forcing; when E , 0, polar water is
salty, deep water can form only close to the northern
wall, and we obtain only the thermal mode.

Three groups of hysteresis experiments are shown,
with K 5 0.3, 0.5, and 1.0 cm2 s21. In order to find the
bifurcation point of the freshwater forcing, we first run
the model to an equilibrium with E # 0. From there we
increased E very slowly (0.1 or 0.05 m yr21 per thousand
years). Due to the slow rate of change of the forcing,
the model remains in quasi equilibrium, and we can see
the response of the model to the different freshwater
forcings while the thermal forcing is basically fixed.

For each group of experiments, there is an upper limit
of E beyond which the thermal mode does not exist. If
we continue to increase the freshwater forcing past this
point, the thermohaline circulation will stay in the haline
mode. When we decrease E starting from a haline mode,
the ocean stays in the mode until flushing, a phenom-
enon peculiar to the haline mode, occurs. In the nu-
merical runs, the model cannot reach equilibrium in the
haline mode. Over a long period, the polar deep ocean
becomes warmer and saltier. With cold and fresh water
overlying the warm and salty deep water in the polar
basin, an instability sets in and very strong convection
occurs, which releases the heat accumulated for hun-
dreds or thousands of years (Marotzke 1990; Huang
1994). However, even with flushing we can see that
under certain conditions, there are two modes possible:
one thermal mode and one haline mode, which is con-
sistent with the scaling and stability analysis.

In order to gain confidence in the quasi-equilibrium
effects displayed in the above experiments, we con-
ducted a series of experiments, where K 5 0.5 cm2 s21

and with different values of E. We start the first exper-
iment from E 5 20.15 m yr21 and an initially homo-
geneous state. After 4000 years of integration, we ob-
tained a quasi equilibrium. We start the next experiment
from this final state with another E and run it to another
equilibrium. When the E is large enough, the upper limit
of the freshwater forcing is passed and the ocean enters
a haline mode. Since there is no steady equilibrium for
a haline mode, we run the model for at least one flushing
period; that is, we stop the experiment in the haline
mode after at least one flushing event. Then we begin
to decrease E to a specified value and continue our
experiments. The results are plotted in Fig. 6 (the ‘‘V’’
points in the figure). We can see that they are pretty
close to the quasi-equilibrium experiments and we ob-
tained two modes for a value of E 5 0.45 m yr21.

Through the above experiments, we find that for each
K, there is an upper limit on E for the existence of a
stable thermal mode below which two modes are pos-
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FIG. 6. Meridional overturning rate from scaling analysis and nu-
merical experiments under mixed boundary conditions with K 5 0.5
cm2 s21. Here the thick lines represents the results from scaling anal-
ysis, the line with arrows is the response of the numerical model to
the very slowly changing freshwater forcing, and the circles represent
the single numerical experiments for different E forcing. Arrow di-
rections represent the freshwater change with time in the process of
integration. No wind stress is applied in this experiment.

FIG. 7. Critical freshwater from scaling analysis and numerical
experiments under mixed boundary conditions. The solid line is for
scaling results and the circles are from the hysteresis numerical ex-
periments.

sible, as predicted by the scaling analysis. We plot the
different critical E versus diapycnal diffusivity in Fig.
7. The numerical experiments are consistent with the
scaling argument, though quantitatively there is a dif-
ference. The linear equation of state assumed in the
scaling argument could cause such a distortion since the
full state equation used in the numerical models is highly
nonlinear (the thermal expansion coefficient a is a
strong function of temperature). Convection plays an
essential role in deep-water formation and the top-to-
bottom density difference is important for convection.
Thus, it is crucial to determine the role of temperature
and salinity in the vertical density distribution in the
convection region. For the thermal mode, convection
occurs in the polar region where the temperature is low
and, thus, a is small (about 1.0 3 1024 K21 at 48C);
since we use a universal value 2.0 3 1024 K21 in the
scaling, the magnitude of the meridional overturning for
the thermal mode, as well as the magnitude of the critical
freshwater flux, are overestimated.

Weaver et al. (1993) investigated the effect of the
freshwater fluxes on the behavior of the thermohaline
circulation. They concluded that the freshwater forcing
is the dominant factor in determining the model’s sta-
bility and internal variability. Increasing the relative im-
portance of freshwater fluxes versus thermal forcing led
to, in turn, one stable steady state of the model, two
stable states, one stable, and one unstable equilibrium,
or no stable steady states. If the freshwater forcing is
sufficiently strong, self-sustained oscillations exist in
the deep-water formation rate, which last thousands of
years. We can find the transition from a multiequilibria

region to a single haline mode region when we increase
the magnitude of the freshwater forcing, and this is ba-
sically consistent with our scaling argument. However,
in contrast to Weaver et al. (1993), the criteria to de-
termine the behavior of the thermohaline circulation is
a nondimensional number defined by (28), which in-
cludes not only the freshwater forcing versus thermal
forcing, but also the effect of diapycnal diffusivity and
the dimensions of the basin. For a given basin, the dia-
pycnal diffusivity also determines the behavior of the
thermohaline circulation. Weaver et al. (1993) investi-
gated the use of different vertical diffusivities. In one
experiment a value of K 5 0.5 cm2 s21 was set through-
out the water column, in another K was made to in-
creases from 0.3 cm2 s21 at the surface to 1.3 cm2 s21

at the bottom of the model ocean. No major differences
were observed. However, from Cummins et al. (1990),
we deduce that the value of diapycnal diffusivity in the
thermocline is more important than that in the deep
ocean. As the above two values of vertical diffusivity
are very close, it is not surprising that Weaver et al. saw
little difference, as far as the behavior of the thermo-
haline circulation is concerned, even though the T–S
structure in the deep ocean could be very different. As
suggested by the scaling analysis and the numerical ex-
periments presented here, not only the freshwater forc-
ing but also the diapycnal diffusivity play important
roles in determining the stability and variability of the
thermohaline circulation under mixed boundary con-
ditions.

Rahmstorf (1995) investigated the sensitivity of the
North Atlantic thermohaline circulation to the input of
freshwater using a global ocean circulation model cou-
pled to a simplified atmospheric model. In his experi-
ments, moderate changes in freshwater input induced
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FIG. 8. Poleward heat transport from scaling analysis and numerical
experiments under mixed boundary conditions. The solid lines are
for scaling results (heavy line for the stable thermal mode and thin
line for the haline mode), ‘‘V’’ are from the numerical experiments
in the thermal mode, and ‘‘3’’ are for numerical experiments in the
haline mode. For all the numerical experiments and the scaling ar-
gument, K 5 0.5 cm2 s21.

transitions between different equilibrium states, leading
to substantial changes in regional climate. His experi-
ments provide a map of the equilibrium states and bi-
furcation points of the Atlantic thermohaline circulation
as a function of freshwater flux. The saddle-node bi-
furcation first described by Stommel (1961) is confirmed
in the Rahmstorf (1995) experiments. Beyond the bi-
furcation point, the North Atlantic Deep Water (NADW)
circulation cannot be sustained. Below the bifurcation
point, at least two states are found: one is characterized
by the absence of NADW, one with NADW. Qualita-
tively, the experiments in Rahmstorf (1995) are consis-
tent with the scaling analysis in this article. In addition,
given the sensitivity of thermohaline circulation to the
diapycnal diffusivity deduced in the present scaling ar-
gument, it is highly likely that the bifurcation point in
the coupled GCM will be sensitive to the diapycnal
(vertical) diffusivity used.

Also, we can define the poleward heat transport as in
(10) for the multiple solutions we obtained under the
mixed boundary conditions. For the stable thermal
mode, we choose C0 5 1⁄3 as given in (47); for the haline
mode, however, C0 5 1⁄3 seems to overestimate the pole-
ward heat transport because, unlike the thermal mode
in which the convected water can sink to the deep ocean
(3000 or 4000 m) and the deep water is nearly homo-
geneous, the convection can only reach to 1000 m in
the haline mode. Thus, the low-latitude-formed ‘‘deep’’
water is a thermocline water mass, and the temperature
difference between these waters and the surface return
flow is greatly reduced. For simplicity, we choose C0

5 1⁄6 in the haline mode for the scaling analysis.
For K 5 0.5 cm2 s21, the results are plotted in Fig.

8. Similar to that under relaxation conditions, the results
from numerical experiments are consistent with the scal-
ing analysis. It is obvious that the stable thermal mode
transports heat poleward far more efficiently than the
haline mode.

4. Discussion and conclusions

From the scaling argument, we conclude that the ther-
mohaline circulation behaves differently under two
types of upper boundary conditions. Under ‘‘relaxation’’
boundary conditions, there is only one equilibrium. Un-
der ‘‘mixed’’ boundary conditions, multiple equilibria
are possible. The states formed under mixed boundary
conditions can be distinguished by a simple relation
between the diapycnal diffusivity and the hydrologic
forcing for a given thermal forcing. When K . CE 3/2,
there are two thermal modes and one haline mode. When
K , CE 3/2, there is only one haline mode. In addition,
through stability analysis, we find that of the two ther-
mal modes arising when K . CE 3/2, only one is a stable
solution. The haline mode solution is always stable.

In the numerical experiments, a two-thirds depen-
dence of meridional overturning on diapycnal diffusiv-
ity is obtained under the relaxation boundary conditions.
Under mixed boundary conditions, there is an upper
limit on the freshwater forcing for a given diapycnal
diffusivity beyond which only a haline mode is found.
Below that limit we have two modes possible: one ther-
mal mode and one haline mode. The dependence of the
critical E on the diapycnal diffusivity also obeys a two-
thirds power law given by the scaling argument. Similar
scaling dependence is obtained for the poleward heat
transport.

The scaling analysis and the numerical experiments
are consistent for both types of upper boundary con-
ditions. Thus, it is reasonable to deduce the lowest order
solution using the simple scaling relation. More impor-
tantly, in contrast to the box models, we have included
the Coriolis parameter, diapycnal diffusivity, and fresh-
water forcing (for mixed boundary conditions only) in
the scaling argument. Under the more physical ‘‘mixed
boundary conditions,’’ the sensitivity of the thermo-
haline circulation to two very uncertain variables, name-
ly, diapycnal diffusivity and freshwater forcing, is de-
fined by an algebraic relation. The importance of E has
been previously discussed by Weaver et al. (1993) and
others, while the significance of the magnitude of the
diapycnal diffusivity to the stability of the thermohaline
circulation has not received much attention yet.

Through scaling analysis and simple numerical ex-
periments, the north–south temperature difference, the
magnitude of the freshwater forcing, and the diapycnal
diffusivity are found to be the most important factors
in determining the stability and variability of the ther-
mohaline circulation, of which the latter two are not
well known so far. This requires us to develop a much
better understanding of these two still challenging
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fields. The diapycnal (vertical) mixing processes have
been under increased observational investigation re-
cently. Ledwell et al. (1993) used a tracer release ex-
periment to estimate a diapycnal diffusivity of 0.1–
0.15 cm2 s21 in the upper thermocline, which agrees
with the small diffusivity estimates for internal wave
processes (Gregg 1989; Polzin et al. 1995). In contrast,
Toole et al. (1994) and Polzin et al. (1997) find that
the diapycnal diffusivity in the abyss is far from uni-
form as traditionally assumed, instead, strong vertical
mixing above rough topography can exceed 10 cm2

s21 , which is two orders of magnitude larger than the
thermocline diffusivity found by Ledwell et al. Our
analysis indicates that an improved knowledge of both
diapycnal mixing and hydrologic forcing is necessary
to understand the stability of the thermohaline circu-
lation.
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APPENDIX

Solution of the Equation |R4 2 R3| 5 F

Here we solve the above equation in the form of (32)
and (33), respectively, to obtain the thermal mode(s)
and haline mode solutions.

The quartic equation (32),

R4 2 R3 1 F 5 0, (A1)

can be reduced to solving the following two quadratic
equations:

R 1
2R 1 (21 1 Ï8y 1 1) 1 y 1 2 5 0, (A2)1 22 Ï8y 1 1

R 1
2R 1 (21 2 Ï8y 1 1) 1 y 1 1 5 0, (A3)1 22 Ï8y 1 1

where y is the arbitrary root of the following cubic
equation:

F
3y 2 Fy 2 5 0. (A4)

8

It is readily shown that, when F , 27/256, there are
two solutions to (A2)–(A3). When F . 27/256, no ther-
mal mode is possible. Thus, the criteria F 5 27/256
determines the existence of thermal modes.

Similarly, for Eq. (33), and it can be derived that there

is always one and only one haline mode solution given
any external conditions.
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