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ABSTRACT

An exact analytical solution for the ideal-fluid thermocline is discussed. The solution is calculated from the
specified functional relations: for the ventilated thermocline it is a linear functional relation between the potential
thickness and the Bernoulli function, and for the unventilated thermocline the potential thickness is a constant.
The solution satisfies the most important dynamic constraints—the Sverdrup relation and other boundary con-
ditions. For any given Ekman pumping field, the surface density that satisfies the a priori specified potential
thickness function is calculated as part of the solution. Climate variability induced by surface cooling/heating
is inferred from the construction of the Green function. It is shown that for the model based on the special
functional form discussed in this paper, the cooling-induced anomaly is in the form of the second dynamic
thermocline mode that has a zero-crossing in the middle of the thermocline, resembling the second baroclinic
mode defined in the classic stability analysis.

1. Introduction

The main thermocline or pycnocline in the subtropical
basins is one of the most prominent features in the
oceans. The existence of the main thermocline has been
known for more than a century, and over the past de-
cades thermocline theory has been developed in order
to explain its structure and the associated circulation.

From the very beginning of the development, there
have been two approaches to this problem. In 1959, two
papers were published side by side in Tellus. Robinson
and Stommel (1959) proposed a theory of the ther-
mocline in which the vertical diffusion plays a vital role.
In this approach, the main thermocline is viewed as an
internal density front or internal thermal boundary layer,
thus the vertical diffusion should be retained. The early
development along this line was summed up in the com-
prehensive review by Veronis (1969). The most chal-
lenging difficulty associated with this approach is that
nobody knows how to formulate suitable boundary val-
ue problems for the corresponding nonlinear equation
system, much less how to find the solutions to this prob-
lem. In order to overcome such difficulty, many simi-
larity solutions have been sought and discussed. The
major disadvantage of the similarity solutions is that
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they do not satisfy important boundary conditions, such
as the Sverdrup constraint.

On the other hand, Welander (1959) proposed an ide-
al-fluid theory for the thermocline. From the beginning,
the basic equations for the thermocline seemed so na-
ively simple that many people believed that they could
be solved easily, so most people did not want to spend
time working on the seemingly incomplete ideal-fluid
thermocline theory, except Welander who also pub-
lished another very influential paper on the ideal-fluid
thermocline (Welander 1971).

The basic ideas for the ideal-fluid thermocline can be
shown clearly in terms of density coordinates and the
Bernoulli function

B 5 p 1 rgz, (1)

where p is pressure, r is density, g is gravity, and z is
the vertical coordinate. Differentiating this equation
leads to

B 5 gz, (2)r

fg
B 5 2 , (3)rr Q

where f 5 2V sin f is the Coriolis parameter (V is the
angular velocity of the earth’s rotation, f is the latitude),
and

Q 5 2 frz (4)

is the PV. It is readily shown that three quantities, den-
sity r, Bernoulli function B, and PV Q, are conserved
along streamlines. Thus, there is a relation between them
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Q 5 Q(r, B). (5)

For a given relation (5) the solution can be found from
(3) or (4), plus suitable boundary conditions.

Assuming (Welander 1971)

Q 5 2(ar 1 bB 1 g), (6)

Eq. (4) leads to a second-order ode in z coordinates

fr 5 (a 1 bgz)r .zz z (7)

The first integration of this equation leads to
2(az1bgz /2)/ fr 5 C(l, f)e ,z (8)

where C(l, f) is a constant depending on the longitude
l and latitude f, and its integration leads to an analytical
solution

r 5 r (l, f)0

z j 1 z 101 C(l, f) exp 2 dj, (9)E 1 2[ ]D sinf00

where r0(l, f) and C(l, f) can be determined by match-
ing the density at the upper and lower boundaries, which
were chosen at z 5 0 and z → 2`; z0 and D0 are
constants specified a priori. For details of this solution
see Welander (1971).

Although this is the first elegant solution for the ideal-
fluid thermocline, and thus has been cited in many text
books, it has some major defects: the solution satisfies
neither the Sverdrup relation nor the eastern boundary
condition, and the lower boundary is set at z 5 2`.
Since the Sverdrup constraint is the most important con-
straint, thermocline solutions that do not satisfy the
Sverdrup relation are less meaningful dynamically. In
this sense, Welander’s original solution is also incom-
plete. It turned out that the wind-driven gyre consists
of many regimes that are dynamically different; thus,
treating the wind-driven gyre with a single PV func-
tional relation, as proposed by Welander, is not a good
choice.

During the 1960s, similarity solutions remained the
mainstream in thermocline theory. However, the limi-
tation of the similarity approach became clear, and there
was a period of relatively low activity in the 1970s.
Beginning in the early 1980s there were major break-
throughs in the theory of the dynamic structure of the
wind-driven gyre, including the PV homogenization the-
ory by Rhines and Young (1982) and the ventilated
thermocline by Luyten et al. (1983). According to these
new theories, the wind-driven gyre includes several re-
gions with different dynamics: the ventilated thermo-
cline where PV is set at the surface, the unventilated
thermocline where PV is homogenized, the shadow zone
near the eastern boundary, and the pool region near the
western boundary. These new theories were combined
and extended to a theory of the wind-driven gyre in the
continuously stratified oceans by Huang (1988). The
dynamic role of the mixed layer, excluded from the early

theories, was incorporated into the thermocline theory
(e.g., Huang 1990; Pedlosky and Robbins 1991; Wil-
liams 1991). The progress made during the past two
decades was reviewed by Huang (1991) and Pedlosky
(1996).

Tracer release experiments in the 1990s provided
strong support for the ideal-fluid thermocline theory be-
cause it was found that diapycnal mixing is very small
in the main thermocline, on the order of 0.1 cm2 s21.
Thus, to a very good approximation the structure of the
thermocline and the wind-driven circulation can be
treated as ideal-fluid motion. It is also very important
to notice that diapycnal mixing is very small, but not
infinitesimal; thus, the theoretical limit of letting mixing
go to zero does not apply to the world oceans.

The basic assumption in the ideal-fluid thermocline
theory is to treat the wind-driven circulation as a (finite
amplitude) perturbation to a specified background strat-
ification [or Potential vorticity (PV) distribution in den-
sity coordinates]. Thus, a small but finite rate of mixing
is included in the zero-order PV–density structure; how-
ever, there is no mixing in the first-order solution. There-
fore, the ideal-fluid thermocline theory does incorporate
a nonzero mixing, so it is different from the aforemen-
tioned theoretical limit of letting mixing go to zero.

A shortcoming of Welander’s solution is that it does
not satisfy the Ekman pumping condition. This is, how-
ever, an issue that can be readily reconciled by incor-
porating the Ekman pumping condition as an upper
boundary condition for the model thermocline, as shown
by Huang (1986). However, this solution is also incom-
plete because it does not satisfy a suitable lower bound-
ary condition. At that time, however, it was unclear what
the suitable lower boundary conditions for a continu-
ously stratified model were, so it was also unclear how
to apply the Sverdrup constraint to such a model.

The solution of the ideal-fluid thermocline for a con-
tinuously stratified ocean was formulated in terms of a
two-point boundary value problem with a free boundary
(the base of the wind-driven gyre) by Huang (1988).
One of the most important features of the solution is
that it satisfies the Sverdrup constraint and suitable
boundary conditions along the eastern and lower bound-
aries. However, the solution of this boundary value
problem has been limited to the finite difference dis-
cretization of the continuous formulation. Therefore, the
structure of a truly continuous solution has remained
unclear. In this study we will show that truly continuous
solutions that satisfy the Sverdrup relation can be found.

During the past 20 years progress has also been made
on thermocline theory emphasizing the dynamic role of
vertical mixing. Based on the similarity approach, Salm-
on (1990) argued that in the limit of infinitely small
diffusion, the thermocline should appear in the form of
a density step function. The similarity approach to the
thermocline has been pursued further by Salmon and
Hollerbach (1991) and Hood and Williams (1996).

Both the ventilated thermocline and diffusive ther-
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mocline theories represent idealizations of the ther-
mocline circulation in the real world; thus, they both
have limitations. For example, in the ideal-fluid ther-
mocline theory, the dynamic role of vertical and hori-
zontal mixing is implicitly included through the spec-
ification of PV for the unventilated thermocline. On the
other hand, although vertical diffusion is included in the
diffusive thermocline theory of the wind-driven gyres,
horizontal mixing is excluded. Another major disad-
vantage of the diffusive thermocline is our inability to
find solutions that can satisfy the Sverdrup constraint;
thus, most solutions obtained so far do not provide us
with the basinwide structure of the wind-driven gyre.

A major deficit of thermocline theories is the lack of
the western boundary layer and recirculation. It is clear
that in order to explain the structure of the wind-driven
circulation, numerical models must be used in which
the dynamic effects of horizontal mixing, the western
boundary layer, and the recirculation are explicitly in-
cluded. For example, Samelson and Vallis (1997) stud-
ied the thermocline structure in a closed basin and
showed that, by using a small diapycnal mixing rate in
the ocean interior, the thermocline does appear in two
dynamic regimes, that is, the ventilated thermocline for
the water entering from the surface layer in the sub-
tropical basin due to Ekman pumping and the diffusive
thermocline over the density range corresponding to the
subpolar basin. In a more recent publication, Vallis
(2000) went through a series of carefully designed nu-
merical experiments based on a primitive equation mod-
el and showed that stratification below the ventilated
thermocline is a result of global dynamics, involving
the effect of wind forcing, geometry of the world
oceans, and diffusion. In particular, his study indicated
that the geometry of the Antarctic Circumpolar Current
plays a subtle but important role in setting up the strat-
ification at the middepth of the world oceans.

Although a simple analytical theory of the ideal-fluid
thermocline cannot possibly explain the details of the
wind-driven circulation, it does provide important in-
sight into the fundamental structure of the circulation.
With this limit in mind, we will concentrate on im-
proving simple solutions for the thermocline. In section
2 we begin to examine a simple analytical solution of
the ideal-fluid thermocline equation. Assuming a simple
linear relation between the potential thickness and the
Bernoulli function for the ventilated thermocline, plus
a constant PV for the unventilated thermocline, a simple
solution for the wind-driven gyre is obtained. The cal-
culation of such a solution is reduced to solving a single
nonlinear algebraic equation at each station. The most
important characteristics of such a solution are: it sat-
isfies the Sverdrup constraint, and its structure resem-
bles the wind-driven gyres observed in the oceans. In
section 3, we explore some extensions of this approach
and show that our formulation can be easily extended
and other solutions can be generated that resemble the
observed features of the thermocline in the oceans.

Climate variability has become one of the main fo-
cuses in recent studies. The ideal-fluid thermocline the-
ory has been used as the theoretical framework for the
study of climate variability (e.g., Deser et al. 1996; Liu
1999; Schneider et al. 1999). Assuming that climate
variability on decadal timescales can be treated as the
difference between two quasi-steady states, climate var-
iability can be inferred from models of the ideal-fluid
thermocline, including the 2½-layer model (Huang and
Pedlosky 1999), the 4½-layer model (Huang and Ped-
losky 2000), and the continuous model (Huang 2000b).
Since these models are not truly continuous, one cannot
find the exact form of climate variability induced by a
point source of buoyancy or Ekman pumping anomaly.
Theoretically, climate variability due to anomalous sur-
face forcing can be treated as the superposition of the
influence due to an individual source; thus, the study of
climate variability can be reduced to the study of the
corresponding Green function. As will be shown in sec-
tion 4, climate variability induced by cooling is likely
to appear in the form of the second dynamic thermocline
mode, which resembles the classic second baroclinic
mode because of the existence of a zero crossing in the
middle depth of the thermocline. Our main results are
concluded in section 5.

2. A new analytical model for the ideal-fluid
thermocline

A slightly different approach to the ideal-fluid ther-
mocline is based on density coordinates, so the starting
point is Eq. (3), instead of (4). For convenience, we will
rewrite Eq. (3) in the following form

B 5 2 fgD,rr (10)

where D 5 1/Q 5 2zr/ f is the potential thickness,
which is conserved along the streamlines. There are
several simple choices that can be solved analytically.

a. A linear functional relation

The linear functional relation is
2D 5 a B 2 b r 2 c .0 0 0 (11)

The reason for assuming a positive coefficient is2a0

that in the subtropical basin interior the layer thickness
increases westward. Thus, both B and D should increase
westward. Introducing the new parameters

a 5 Ï fga , b 5 fgb , c 5 fgc ,0 0 0

the general solution to this equation is

b c
B 5 [r 1 c cosa(r 2 r )] 1 , (12)1 c2 2a a

where c1 and rc are two constants to be determined. In
fact, Welander (1971) discussed the general solutions
when D 5 F(aB 1 br 1 c), where F is an arbitrary
function. Killworth (1987) also studied similar cases.
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b. A simple case with PV independent of density

We consider the case when D linearly depends on B.
In this study we assume that layer thickness is zero along
the eastern boundary, so D 5 B is a simple choice.2a0

In addition, the potential thickness of the unventilated
thermocline is assumed to be constant. The equation
corresponding to (10) is

2B 1 a B 5 0,rr (13)

where a 5 a0.Ï fg
The general solution for this equation that satisfies

the upper boundary condition

B 5 0, at r 5 rr s (14)

is

B 5 c cos a(r 2 r ),1 s (15)

where rs 5 rs(l, f) is the unknown sea surface density
and c1 5 c1(l, f) is an integration constant that can be
determined by the boundary conditions. This can be
rewritten as

cosa(r 2 r )sB 5 2 B , (16)r,0a sinaDr

where Dr 5 r0 2 rs, Br,0 5 dB/ is the densitydr | (rr5r 00

of the isopycnal that outcrops along the boundary be-
tween the subpolar and subtropical gyres, so it is the
boundary that separates the ventilated thermocline from
the unventilated thermocline). The corresponding first
derivative is

sina(r 2 r )sB 5 B . (17)r r,0sinaDr

The formulation of the suitable boundary value prob-
lem discussed here is a simple extension of the ideal-
fluid thermocline theory discussed by Huang (1988).
We also assume that along the eastern boundary water
below the ventilated thermocline has a constant strati-
fication, 5 const, and PV in the unventilated ther-arz

mocline is homogenized toward the northern boundary
of the subtropical gyre (Rhines and Young 1982); that
is, the PV for the stagnant water and the unventilated
thermocline is

a a h aQ 5 2 fr , Q 5 2 f r ,z n z (18)

where f n is the Coriolis parameter along the northern
boundary of the subtropical gyre. As discussed by
Huang (1988), the determination of the solution in the
case with constant stratification for the unventilated
thermocline and stagnant water is reduced to finding the
depth of this r0 density surface.

Assuming that

B 5 B , B 5 B at r 5 r , (19)0 r r,0 0

we obtain the following relations for the density layer
below r0:

hB 5 B 2 fg(r 2 r )/Q , (20)r r,0 0

2 hB 5 B 1 B (r 2 r ) 2 fg(r 2 r ) /2Q . (21)0 r,0 0 0

Along the eastern boundary where we assume that all
ventilated isopycnals outcrop at z 5 0 (Luyten et al.
1983), the suitable boundary conditions are

B 5 0, B 5 0 at r 5 r . (22)e r,e 0

Thus, the corresponding structure at the eastern bound-
ary is

aB 5 2 fg(r 2 r )/Q , (23)r,e 0

2 aB 5 z2 fg(r 2 r ) /2Q . (24)e 0

At the base of the moving water in the thermocline,
r 5 rb, both the Bernoulli function and its derivatives
with respect to r should match with those for the stag-
nant water or for water along the eastern boundary; that
is,

B 5 B , B 5 B at r 5 r . (25)e r r,e b

Substituting (20) and (23) into (25) leads to

a h h ar 2 r 5 2B Q Q / fg(Q 2 Q ).b 0 r,0 (26)

Substituting (26) into (20) leads to

h h aB 5 B Q /(Q 2 Q ).r,b r,0 (27)

Substituting (26) into (21) and (24) and using boundary
condition (25) lead to

2 a h h aB 5 B Q Q /2 fg(Q 2 Q ).0 r,0 (28)

Let r 5 r0 in (16), substituting it into (28) leads to

2g( f 2 f ) cosaDrnB 5 . (29)r,0 af r a sinaDrn z

The solution should satisfy another constraint, the
Sverdrup constraint for a continuously stratified ocean.
For the present case with uniform PV for the unventi-
lated thermocline, the Sverdrup constraint is reduced to
(Huang 1988)

r0221 2 (1 2 f / f )n3 h 2B Q 1 B drr,0 E r3 fg
rs

xe22r f g05 2 w dx. (30)E eb x

Using (17), the second term on the left-hand side of Eq.
(30) is reduced to

r 20 B 1 1r,02B dr 5 2 sin2aDr 1 aDr . (31)E r 2 1 2a sin aDr 4 2
rs

Thus, Eq. (30) can be rewritten as
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af rn z3 22B [1 2 (1 2 f / f ) ]r,0 n3 fg
2B 1 1r,0

2 2 sin2aDr 1 aDr
2 1 2a sin aDr 4 2

xe22r f g05 w dx. (32)E eb x

Combining (29) and (32) leads to a single transcen-
dental equation in the density difference Dr, the Coriolis
parameter f , and the zonal position of the station xe 2
x. Assuming that the Ekman pumping is independent of
x, this equation is linear in x. Thus, for given f and Dr
the zonal position of the station can be determined from
this linear equation. This approach gives us the solution
on an irregular grid in the x direction.

On the other hand, it is more desirable to calculate
the solution on a regular grid; thus, for a given Ekman
pumping forcing and the coefficient a0 in the PV func-
tion (11), the structure of the thermocline can be cal-
culated by solving Dr from this nonlinear equation. It
is readily seen that such a nonlinear equation may have
multiple solutions. However, a solution for the ther-
mocline structure in a closed basin also has to satisfy
an additional constraint that the isopycnal depth should
monotonically increase from zero on the sea surface to
the depth of the r0 isopycnal surface. From Eq. (17),
this means that a physically meaningful solution should
satisfy the following constraint:

aDr , p/2.

From our calculations, it was found that there is only
one solution that can satisfy this additional constraint.
The structure of the solution is controlled by the choice
of several parameters, such as a0, , and the others.arz

From Eqs. (29) and (32), it is clear that along the eastern
boundary a(r0 2 rs) 5 p/2 because the Ekman forcing
term vanishes. Thus, we have a convenient relation to
estimate parameter a0:

p
a 5 ,0

2Dr Ï f ge n

where g is the gravitational acceleration, and Dre 5 r0

2 rs,e is the density difference at the northeastern corner
of the basin.

Note that this model requires that water with density
r0 sink along the intergyre boundary. Similar to the case
discussed by Huang (1988), near y 5 yn (the northern
boundary of the subtropical gyre) we have the following
approximation:

21/3dweDr } Dx . (33)1 2dy

Therefore, the place where water with density r0, that
is, Dr 5 0, is located at x 5 2`, along y 5 yn.

c. An example

The model has been applied to a model basin with
geometry mimicking the North Atlantic: 608 3 608, a0

5 1.234 (assume Dre 5 4s units), 5 22.5 3 1028arz

(which corresponds to a density change of 2.5 s units
over the depth of 1000 m), the Ekman pumping has a
simple profile:

y 2 ys24 21w 5 21.0 3 10 sin cm s .e y 2 yn s

The result shown below has a modest resolution of a
regular 101 3 101 grid.

The surface density distribution at lower latitudes is
rather close to a zonal distribution; it has a northeast-
ward tilt in the northern basin (Fig. 1a), rather similar
to the surface density distribution in the North Atlantic.
That the surface density pattern looks like the observed
pattern is not a surprise because the assumption of a
linear relation between potential thickness and the Ber-
noulli function is a good approximation. In fact, in the
original ventilated thermocline model by Luyten et al.
(1983) the potential thickness and the Bernoulli function
for the upper layer have a linear relationship. Further-
more, the potential thickness functional relation, diag-
nosed from a model of the ideal-fluid thermocline in
which the surface density is assumed to be purely zonal,
is very close to a simple linear function with the co-
efficient almost independent of the density, as shown in
Fig. 17 by Huang (1988). The density at the base of the
wind-driven gyre (Fig. 1b) is somewhat too large, and
this is probably due to our assumption of a constant
potential thickness function for the unventilated ther-
mocline. However, the depth of the wind-driven gyre
(Fig. 1d) seems close to the solution based on more
realistic parameters, as discussed by Huang (1990). At
the sea surface the Bernoulli function is the same as the
pressure; therefore Fig. 1c actually indicates the stream-
lines of an anticyclonic gyre on the sea surface.

In addition, we also include the circulation pattern on
two isopycnal surfaces: the Bernoulli function (or the
streamfunction on this isopycnal surface) and the depth
of the isopycnal s 5 27.0 are shown in Figs. 2a and
2b; and corresponding parts for s 5 23.8 are shown in
Figs. 2c and 2d. The first isopycnal s 5 27.0 corre-
sponds to the interface between the ventilated and un-
ventilated thermocline in this case, so this isopycnal
surface outcrops along the intergyre boundary. As dis-
cussed above, however, the surface density can reach
this value only as x → 2`. At this time, it is unclear
how to extend this solution into the subpolar region;
thus, near the intergyre boundary the properties of this
solution are not very clear. The second isopycnal surface
outcrops along a curve in the northern basin, along
which water is subducted and moves along the stream-
lines shown in Fig. 2c.

The structure of the thermocline is also shown
through two zonal sections taken along y 5 218N (Fig.
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FIG. 1. The structure of the thermocline solution: (a) surface density in s units; (b) density at the base of
the wind-driven gyre, in s units; (c) Bernoulli function on the sea surface, in units of 0.1 kg m21 s22; and
(d) the base of the wind-driven gyre, in 100 m.

3a), and y 5 278N (Fig. 3b), and two meridional sections
taken along x 5 128E (Fig. 3c) and x 5 548E (Fig. 3d).
The horizontal curves in these figures indicate the stag-
nant water (or the so-called shadow zone in the original
ventilated thermocline theory). Note that in this figure
the isopycnal increment for the ventilated isopycnal lay-
ers is twice as big as that used in the unventilated layers.
Thus, the stratification within the main thermocline is
much higher than that in the unventilated thermocline
or the stagnant water. In this figure and some other
figures in this paper, we will focus on the upper part of
the thermocline (800 m), so the lower part of the un-
ventilated thermocline may not be included in these fig-
ures; however, the structure of the solution for this part
of the thermocline can be inferred from the structure
shown in these figures.

The only difference with the ideal-fluid thermocline
solutions discussed by Luyten et al. (1983) and Huang
(1988) is the lack of the pool region in the solution

discussed above. This is, however, not a substantial lim-
itation because one can construct a solution whose PV
function has any form specified a priori, as will be dis-
cussed shortly.

3. Solution with general forms of the potential
thickness function

Note that the specific solution discussed above is the
simplest possible solution. The basic formulation can
be applied to the general case when the potential thick-
ness is any given function of B and r; that

B 5 2 fgD, D 5 F(r, B),rr (34)

where F(r, B) is a given function.
In particular, if we assume that

2 2 2 2D 5 a [(1 1 k ) 2 2k B ]B,0

the solution is in the form of Jacobi elliptical function
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FIG. 2. Bernoulli function (streamfunction, in 0.1 kg m21 s22) on two isopycnal surfaces (left panels),
and the depth (in 100 m) of these isopycnal surfaces (right panels).

cn a(r 2 rs, k). This family of solutions is quite similar
to the solution discussed above, so we will turn our
attention to the general cases of D 5 F(r, B). Similar
to the case discussed in the main text, the structure of
the ideal-fluid thermocline can be found by solving this
equation subject to the following three constraints at
each point (x, y) in the basin interior:

r0221 2 (1 2 f / f )n3 h 2B Q 1 B drr,0 E r3 fg
rs

xe22r f g05 2 w dx, (35)E eb x

B 5 0 at r 5 r , (36)r s

2 a h a hB 5 2B Q Q /2 fg(Q 2 Q ) at r 5 r . (37)0 r,0 0

Note that the upper boundary is free. This boundary
value problem can be solved by a shooting method.

Assuming an initial guess for the depth of the r0 iso-
pycnal surface, that is, Br(r0), Eq. (34) can be integrated
upward toward the surface (lower density), using a
fourth-order Runge–Kutta scheme. The integration
stops whenever Br 5 0 and the density rs where Br(rs)
5 0 is the surface density. By adjusting Br(r0), a final
solution can be found that satisfies all three constraints,
including the most important dynamic constraint—the
Sverdrup relation.

We show four examples here. The first two cases are
produced by using a potential thickness function that
depends on the density

2D 5 a Bj(r),0 (38)

where j(r) is a function of the density. For the first case,
we assume a half-Gaussian profile

2
r 2 r0j(r) 5 1 1 2 exp 2 , Dr 5 1.0. (39)1 2[ ]Dr
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FIG. 3. Zonal sections and meridional sections through the model basin. Solid lines indicate the ventilated
thermocline with an increment of Ds 5 0.4; dashed lines depict the unventilated thermocline with an
increment of Ds 5 0.2.

Using this function, we produce a subtropical gyre
with a slightly higher density in the northern basin (Fig.
4a). Most interestingly, we have low PV for the first
few ventilated layers, as shown in Fig. 4b. The potential
thickness of layers with lighter density is gradually re-
duced. Of course, such PV structure is exactly what we
specified above in the functional relation between po-
tential thickness and density.

For the second example, we use a piecewise linear
function of the density (in units of s):

1 1 3(r 2 r) if r 2 1 , r , r0 0 0
j(r) 5 1 1 3(2 1 r 2 r ) if r 2 2 , r , r 2 10 0 0
1 if r , r 2 2. 0

(40)

This produces a low PV layer in the middle of the

ventilated layers (Fig. 5b), just as we expected from the
functional relation specified above. Note that the low
PV layer corresponds to a very low meridional surface
density gradient in the northern basin, as shown in Fig.
5a.

We also explored the effect of nonlinearity associated
with the Bernoulli function. Here we only show two
simple cases. First, we assume that the potential thick-
ness has a functional relation

2 0.95D 5 a B .0 (41)

This functional relation produces a surface density
pattern quite different from the previous cases. Most
interestingly, the outcrop lines in the southeastern corner
have a slightly NW–SE orientation, but in the north-
eastern basin, outcrop lines have a slightly SW–NE ori-
entation (Fig. 6a). Note that such a pattern resembles
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FIG. 4. Structure of the wind-driven circulation for the case with potential thickness in the form of a
half Gaussian profile [Eq. (39)]. (a) The sea surface density; (b) a section through x 5 128E, the solid lines
indicate the ventilated thermocline, and the dashed lines the unventilated thermocline.

FIG. 5. Structure of the wind-driven circulation for the case with the potential thickness linearly dependent
on the density: (a) the sea surface density and (b) a section through x 5 128E; the solid lines indicate the
ventilated thermocline, and the dashed lines the unventilated thermocline.

the sea surface density pattern in the North Pacific in
late winter.

Second, we assume that the potential thickness func-
tion has the following form:

2 1.1D 5 a B .0 (42)

This functional relation produces a circulation that is
quite different from the previous case. The most inter-
esting phenomenon is that sea surface density reaches
a maximum south of the intergyre boundary, as shown
in Fig. 7. In addition, the PV is much lower than that
of the previous case.

4. A Green function approach to climate
variability induced by a buoyancy anomaly

a. Characteristic cone inferred from this model

An important application of this continuous solution
of the ideal-fluid thermocline is the climate variability
induced by a point source of Ekman pumping or buoy-
ancy forcing. Due to the specific assumption about the
functional relation between the potential thickness and
Bernoulli function, it is rather difficult to infer the cli-
mate variability due to a surface forcing anomaly. A
seemingly simple approach is to look at the difference
between two solutions that correspond to a slightly dif-
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FIG. 6. Structure of the wind-driven circulation for the case with potential thickness function D 5 B0.95:2a0

(a) the sea surface density and (b) a section through x 5 128E; the solid lines indicate the ventilated
thermocline, and the dashed lines the unventilated thermocline.

FIG. 7. Structure of the wind-driven circulation for the case with the potential thickness function D 5
BI.I: (a) the sea surface density and (b) a section through x 5 128E; the solid lines indicate the ventilated2a0

thermocline, and the dashed lines the unventilated thermocline.

ferent parameter a0. However, this leads to a difference
in buoyancy distribution over the entire basin, so this
is not a very interesting solution. In the following we
discuss the structure of perturbations induced by a point
source of anomalous forcing.

First, if there is a point source of the Ekman pumping
anomaly, there should be a response west of the per-
turbation because the Sverdrup relation involves a west-
ward integration of the Ekman pumping. Since we have
specified the functional relation between the potential
thickness and the Bernoulli function, the perturbations
inferred from the model are the following: West of the
Ekman pumping anomaly, the surface density distri-
bution is changed in such a way that the new surface

density distribution is consistent with the Ekman pump-
ing pattern and the prespecified functional relation be-
tween potential thickness and the Bernoulli function.
South of the perturbation latitude, however, there are no
perturbations in the solution because the local solution
should remain the same as before. Therefore, this model
cannot be used to infer the climate variability due to a
point source of Ekman pumping anomaly.

Second, if there is a point source of cooling or heat-
ing, the system should respond by creating a PV anom-
aly that propagates downstream within a characteristic
cone, as discussed by Huang and Pedlosky (2000). For
the case of a 20-ventilated-layer model, Huang (2000b)
also showed the structure of the characteristic cone iden-
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FIG. 8. Characteristic cones stemming from perturbations located
along the isopycnal outcrop line (s 5 24.0), indicated by the thin
dashed line. The eastern edges of the cones are defined by the stream-
lines on the sea surface and indicated by the heavy solid lines. The
western edges of the cones are defined by the streamlines on the s
5 24.0 isopycnal surface (heavy dashed lines).

FIG. 9. Domain of dependence for three stations A (AB), C (CDE), and F (FGHI) within the
characteristic cone stemming from a point source of perturbation, see text for details.

tified from the numerical solution. In the present case,
however, such characteristic cones can be constructed
from the truly continuous solution. An example is shown
in Fig. 8: along the outcrop line of s 5 24.0 (depicted
by the thin dashed line) a cooling anomaly induces a
potential thickness anomaly that propagates southwest-
ward along a streamline on isopycnal s 5 24.0. This
streamline serves as the western edge of the character-
istic cone. Since this isopycnal is subducted, the stream-
line is depicted by a heavy dashed line. This streamline
carries the primary potential thickness anomaly, along
whose path a secondary potential thickness anomaly is
created whenever this primary characteristic crosses a
new outcrop line. The newly created secondary potential
thickness anomaly propagates on the corresponding new
isopycnal. This secondary potential thickness anomaly
in turn creates a tertiary potential thickness anomaly,
which gives rise to a potential thickness anomaly of
higher order, and so on. As discussed by Huang and
Pedlosky (2000), the eastern edge of the characteristic
cone is defined by the streamline on the sea surface
(which is represented by a constant Bernoulli function
contour line) that passes through the point source of
buoyancy anomaly, as depicted by solid lines in Fig. 8.
Therefore, the eastern and western edges of the char-
acteristic cone can be defined by the streamlines on the
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FIG. 10. The first derivative of the Green function (taken for a station at the center of the basin) for PV
anomaly input at different densities ri.

sea surface and on the isopycnal surface s 5 24.0,
respectively.

The characteristic cone discussed above defines the
so-called domain of influence for a point source, that
is, the region downstream that is influenced by this point
source of anomaly. Due to the velocity shear in the
vertical direction, the characteristic cone becomes wider
and wider downstream. Within the cone, however, the
solution at an individual station depends on the PV func-
tion that is set up from the upstream condition; that is,
the solution at each station is controlled by the condition
within the so-called domain of dependence. Similar to
the domain of influence, the domain of dependence
gradually expands in the upstream direction. The so-
lution at each station can be determined by tracing up-
stream along characteristics and finding out the PV
anomaly advected along characteristics passing through
the station.

In the present case, all PV anomalies are set up at
the outcrop lines by a subsurface PV anomaly that is
advected from upstream. In order to find the PV anomaly
at a given density ri that passes through a given station,
one can follow a search procedure: first, use (16) to
calculate the Bernoulli function Bi for the density ri at
the subsurface depth; second, find the location (x, y) by
matching both Bi and ri with the Bernoulli function and
density on the upper surface obtained from the unper-
turbed solution. The whole domain of dependence for
stations within the characteristic cone can be defined
through this search procedure. As an example, the do-
mains of dependence for three stations, A, C, and F,
within the characteristic cone are shown in Fig. 9. The
solution at station A depends on the PV anomaly set up
along line AB. Note that surface density increases from
A to B. (The streamline connecting points A and B on
the isopycnal surface that outcrops at point B is omit-
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FIG. 11. The first derivative of the Green function for PV anomaly
input 25 # s # 26.

FIG. 12. Green functions representing the system’s response to a surface density anomaly. (a) Result
from this model; the dashed line on the left end indicates a surface-trapped d-function response. (b)
Result from model with 20 ventilated layers, plus a mixed layer and the unventilated thermocline (Huang
2000b). The dashed line indicates the perturbation within the unventilated thermocline.

ted.) Similarly, the solution at C depends on the PV
anomaly set up along line CDE, and the solution at F
depends on the PV anomaly set up along line FGHI.

However, line CDE represents a critical situation be-
cause it is tangential to the western edge of the char-
acteristic cone at point D where the two segments, CD
and DE, join. For the solution at F, the uppermost seg-
ment corresponding to DE shrinks to a tiny segment HI
that is within the characteristic cone and represents the
PV perturbation influence on a deep density segment.
The segment GH is outside the characteristic cone. As

a result, there is no PV perturbation signal coming with-
in this density range. Slightly upward in the water col-
umn, the PV perturbation signal comes again from the
density corresponding to segment FI.

Therefore, for the present case, west of station C, the
perturbation solution at a station may have PV anom-
alies entering the water column at two density intervals,
one below the surface and the second one farther below
in the water column.

Although we have identified the edge of the char-
acteristic cone, the exact structure of the perturbation
within this cone remains a theoretical challenge. As dis-
cussed above, there are many characteristics within this
cone, and at each station within the cone the exact form
of the perturbation depends on the combined effect of
all these potential thickness perturbations. A four-layer
model discussed by Huang and Pedlosky (2000) pro-
vides a glimpse of the complexity. As the number of
outcrop lines increases, the number of the characteristics
grows exponentially. Thus, the structure of the char-
acteristic cone in a multilayer model or a continuous
model may be another example of the exponential ex-
plosion of the complexity. Until a better approach is
found to overcome this complexity, our discussion is
limited to the western edge of this characteristic cone,
where there is only a single characteristic involved.

b. Green function

Climate variability induced by a point source of per-
turbation can be understood better in terms of the Green
function as follows. Assume that a single PV perturbation
will affect the solution in the following manner:
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2dB 1 a dB 5 d · d(r 2 r ) 1 D · d(r 2 r ),rr i 1 (43)

where ri is the density layer where the PV perturbation
(its strength is d) enters the water column, and we will
assume ri satisfies the constraint: rs , ri , r0. The
second term on the right-hand side denotes the possible
PV perturbation for the uppermost density layer. Recall
that the model assumes a specified potential thickness
function, so the surface density under the perturbed
boundary condition may be different from rs in the un-
perturbed solution. This perturbation is due to changes
in the circulation, so that PV for the uppermost layer
may not satisfy the same relation D 5 B, as specified2a0

a priori.
We seek the solution in terms of the Green function.

For the present case, the Green function is

2dB 5 c cosa(r 2 r ), for r , r , r , (44)1 1 s i

2dB 5 2ac sina(r 2 r ), for r , r , r , (45)r 1 1 s i

1dB 5 c cosa(r 2 r ) for r , r , r , (46)2 2 i 0

1dB 5 2ac sina(r 2 r ), for r , r , r . (47)r 2 2 i 0

There are five unknown constants: r1, r2, c1, c2, and
D. In order to determine these constants, we need the
following five constraints:

1) Continuity of dB at ri: This constraint leads to

cosa(r 2 r )i 1c 5 c . (48)2 1cosa(r 2 r )i 2

2) Integrating Eq. (43) over the density range [ri 2
dr, ri 1 dr] and letting dr → 0, we have the jump
condition

1 2dB 2 dB 5 d, at r 5 r .r r i (49)

Thus, we have a relation

2c a sin(r 2 r ) 1 c a sina(r 2 r ) 5 d.2 i 2 1 i 1 (50)

Combining (48) and (50) leads to

d cosa(r 2 r )i 2c 5 , (51)1 a sina(r 2 r )2 1

d cosa(r 2 r )i 1c 5 . (52)2 a sina(r 2 r )2 1

3) Integrating Eq. (43) across the upper boundary rs

leads to

2c a sina(r 2 r ) 5 D/2.1 s 1 (53)

This relation will be used to determine the PV pertur-
bation for the uppermost layer, which is subducted at
this station.

4) As discussed above, at the r0 isopycnal surface
Eq. (28) provides another constraint. Taking the per-
turbation of (28) leads to

af rn zdB 5 B dB at r 5 r (54)r,0 r 0g( f 2 f )n

so that

g( f 2 f )ntana(r 2 r ) 5 2 . (55)0 2 aa f r Bn z r,0

Using (29), this leads to

1
tana(r 2 r ) 5 tana(r 2 r ). (56)0 2 0 s2

Thus, we have a simple relation that r2 is roughly
half way between rs and r0. From (47), it is readily
seen that for the case when ri , r2, the lower branch
of the Green function should have a zero-crossing at r2.

5) The Sverdrup constraint (30) leads to a constraint
for the perturbations

r0af rn z2 22B [1 2 (1 2 f / f ) ]dB 2 2 B dB drr,0 n r,0 E r rfg
rs

5 0. (57)

After some algebraic manipulations, this leads to

af rn z 22B sina(r 2 r ) sina(r 2 r ) [1 2 (1 2 f / f ) ]r,0 0 2 0 s nfg

cosa(r 2 r ) 1 1i 25 2 sina(2r 2 r 2 r ) 1 sina(r 2 r ) 1 (r 2 r ) cosa(r 2 r )i s 1 a 1 i s 1 s[ ]cosa(r 2 r ) 2a 2ai 1

1 1
1 2 sina(2r 2 r 2 r ) 1 sina(2r 2 r 2 r ) 1 (r 2 r ) cosa(r 2 r ) . (58)0 s 2 i s 2 0 i 2 s[ ]2a 2a

Because this is a perturbation to the existing solution
at a given station, rs is known from the unperturbed

solution at this station. Using relations (51), (52), and
(56), Eq. (58) is reduced to a nonlinear algebraic equa-
tion for a single variable r1, which can be solved nu-



AUGUST 2001 2455H U A N G

merically. The structure of the solution can be found
accordingly.

c. Perturbations due to surface cooling/heating

In this section we discuss the case of a surface density
anomaly. We also assume that there is no source of PV
perturbation below the surface density layer, so the
Green function can be written as

dB 5 C cosa(r 2 r ),2 (59)

and its first derivative is

dB 5 2aC sina(r 2 r ),r 2 (60)

where C and r2 are constants to be determined from the
following two constraints:

1) Similar to the discussion above, at the lower
boundary the variation of (28) leads to a constraint (56),
which determines r2. As discussed above, this relation
means that the Green function should have a zero-cross-
ing at r2. That surface density anomaly can induce sec-
ond baroclinic modes or other high internal modes can
be shown clearly by taking the variation of the Sverdrup
constraint, as discussed by Huang and Pedlosky (2000).

2) The additional constraint can be obtained by taking
the variation of the Sverdrup constraint (30). The first
term on the left-hand side of (30) leads to

af rn z2 222aC sina(r 2 r )B [1 2 (1 2 f / f ) ]. (61)0 2 r,0 nfg

The second term on the left-hand side of (29) is re-
duced to

r0

22 B dB dr 2 B (r )dr 5 I 1 I , (62)E r r r s s 1 2

rs

aCB 1r,0
I 5 sina(2r 2 r 2 r )1 0 s 2[sinaDr 2a

1
1 sina(r 2 r )2 s2a

2 cosa(r 2 r )(r 2 r ) , (63)2 s 0 s ]
2 2B Br,0 r,0 2 3I 5 2 sinadr dr ø 2 a dr . (64)2 s s s2[ ]sinaDr sin aDr

Thus, the Sverdrup constraint is finally reduced to

aBr,0 3(X 1 Y )C 5 dr , (65)ssinaDr

where

af rn z 22X 5 B sinaDr sina(r 2 r ) [1 2 (1 2 f / f ) ],r,0 0 2 nfg

1 1
Y 5 sina(2r 2 r 2 r ) 1 sina(r 2 r )0 s 2 2 s2a 2a

2 cosa(r 2 r )(r 2 r ).2 s 0 s

Note that X represents the contribution due to the
unventilated thermocline, thus | X | . | Y | . Thus the
sign of X 1 Y is controlled by X. From Eq. (65), drs

and C should have the same sign. For example, due to
surface cooling, density increases; that is, drs . 0 and
C . 0. Accordingly, we have

dB . 0 for r , r , r ,r s 2

dB , 0 for r , r , r .r 2 0

Therefore, surface cooling induces an upward motion
in the upper part of the thermocline and a downward
motion in the lower part of the thermocline. This is
consistent with the results from both a multiple-layer
model (Huang and Pedlosky 1999) and a continuously
stratified model by Huang (2000b).

The structure of the Green function representing the
response of the system (at a station exactly in the center
of the model basin) to a subsurface PV anomaly is
shown in Fig. 10, with d 5 1, that is, a positive PV
anomaly (corresponding to surface heating). Instead of
the Green function itself, here we show its first deriv-
ative (dBr) because it corresponds to the vertical dis-
placement of the isopycnal. Since this Green function
satisfies the condition of a depth-weighted zero inte-
gration, its amplitude is larger at shallow levels. In par-
ticular, if the forcing is very close to the surface, the
Green function looks like a surface-trapped d function,
as shown in Fig. 10a. As the PV input moves down to
the lower part of the thermocline, the response in the
lower part of the water column becomes larger. In ad-
dition, the system possesses an eigenmode, which has
a zero crossing, s2, as shown in (47). For the station
discussed here, it is located at s2 5 24.81. Thus, if si

, s2, the Green function has a zero-crossing at s2, as
shown in Figs. 10a and 10b. On the other hand, if s .
s2, the zero-crossing is located at the jump point si, as
shown in Figs. 10c and 10d.

Note that the Green function discussed here is defined
for r . r0 only. Since we assume that PV of the un-
ventilated thermocline is homogenized, the correspond-
ing change in Br is constant for the density range r0 ,
r , rb. The dashed lines in Fig. 10 depict this extrap-
olation of the Green function to the unventilated ther-
mocline.

The Green function for the present case has a prom-
inent structure in the form of the so-called second dy-
namic thermocline mode, as discussed by Huang and
Pedlosky (2000). However, note that we do not rule out
the possibility that higher modes can exist because our
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results obtained here belong to a special family of ther-
mocline solutions.

In reality, the PV anomaly input appears over a finite
density range, so the response of the system to such
anomalous forcing is smoothed. For example, at the
same station (in the middle of the basin) the Green
function averaged over the uniform input within the
density range of 25 # s # 26 has a continuous transition
between the positive and negative parts, as shown in
Fig. 11. If the PV input is not uniform within this density
range, the resulting Green function may have quite a
different shape.

The Green function induced by a point source of cool-
ing is in the form of a surface-trapped d function (Fig.
12a). This solution is calculated at the center of the
basin. Note that this solution is consistent with the struc-
ture of the Green function shown in Fig. 10. As ri ap-
proaches sea surface density, the corresponding Green
function becomes more and more d-function-like. This
solution is consistent with the perturbation solution cal-
culated from a model with 20 ventilated thermocline
layers (Fig. 12b), including a mixed layer and the un-
ventilated thermocline, as discussed by Huang (2000b).
This solution is produced by moving the 15th outcrop
line (s 5 25.5) northward by dy 5 0.018; the solution
shown here is taken at 408E (the basin is within 08–
608E).

5. Conclusions

We have shown that the structure of wind-driven cir-
culation in the subtropical basins, or the thermocline,
can be simulated by specifying simple functional rela-
tions for the potential thickness. Assuming a linear func-
tion such as D 5 B for the ventilated thermocline and2a0

a constant potential thickness for the unventilated ther-
mocline gives rise to a solution that resembles the sub-
tropical gyres observed in the oceans. Note that We-
lander’s solution is based on the potential thickness
function

1
D 5

ar 1 bB 1 g

for all density layers. In addition, his solution does not
satisfy the Sverdrup constraint, but our new solution
does satisfy the Sverdrup constraint. The differences
between Welander’s formulation and our new formu-
lation are dynamically critical, and they reflect a much
deeper physical understanding of the thermocline prob-
lem than in the past.

It was unclear from previous studies what might hap-
pen when the number of ventilated layers in the ideal-
fluid thermocline theory goes to infinity. Is a truly con-
tinuous solution possible? Or might the solution appear
in the form of a density discontinuity in the otherwise
truly continuous model? We have shown that such a
density front is not necessary in the continuous limit of
the ideal-fluid thermocline. In fact, we have presented

a simple solution that has a truly continuous structure
in three-dimensional space, including a weak disconti-
nuity in PV at the interface between the ventilated and
unventilated thermoclines.

It is important to emphasize that this continuous so-
lution is obtained under the assumption that PV is uni-
form for the unventilated thermocline. The nonexistence
of the PV singularity in the unventilated thermocline
implies a finite rate of mixing that sets up such a PV
relation in the unventilated thermocline in the basin. In
fact, the dynamic roles of diapycnal mixing, horizontal
mixing, and recirculation have been implicitly included
through the specification of the PV of the unventilated
thermocline in the ideal-fluid thermocline theory.

On the other hand, it is quite straightforward to pro-
duce an ideal-fluid thermocline solution with step-func-
tion-like discontinuity in density. Using a one-dimen-
sional model, which represents a balance between ver-
tical advection and diffusion, one can easily generate
the PV functional relation for the unventilated ther-
mocline. As diffusion is gradually weakened, a sharp
internal density (or PV) front appears in the unventilated
thermocline. Given such a PV functional relation with
a relatively sharp internal front, the ideal-fluid ther-
mocline model can give rise to a solution that further
enhances the density gradient across such a front and
produces a step-function-like main thermocline, see Fig.
4 by Huang (2000a). This solution resembles the sharp
thermocline produced by a numerical model with weak
vertical mixing by Samelson and Vallis (1997). There-
fore, within the theoretical framework of the ideal-fluid
thermocline, it is possible to generate solutions with or
without internal density discontinuity, and these solu-
tions are idealizations of the wind-driven circulation
under different conditions or theoretical limits.

The climate variability due to a point source of cool-
ing or heating remains unclear. It is speculated that this
problem can be reduced to the construction of the Green
function, which may involve integrating the perturba-
tions into a unified structure. It is possible that the ex-
ponential explosion of the characteristics may be over-
come by some transformation of coordinates or vari-
ables. I have attempted to reveal the structure of the
Green function corresponding to a point source of cool-
ing/heating. However, it remains unclear how to find
the complete structure of the Green function for the
point source of anomalous buoyancy forcing.
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