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Abstract

The errors introduced by asynchronous time stepping are analyzed. It is shown that asynchronous time
stepping distorts the structure and the speed of the lowest mode. For typical time step ratios used in climate
simulations, the lowest mode is no longer a strictly barotropic mode, and the associated wave is much
slower than the barotropic Rossby waves in the oceans. As a result, seasonal cycles simulated in model runs
based on asynchronous time stepping are severely contaminated.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The asynchronous time stepping method has been widely used in OGCM experiments in order
to speed up the computation. For example, for horizontal resolution of 1� or 2�, a time step on the
order of hours is used for the velocity calculation, but a much longer time step, on the order of
days, is used for the tracer calculation. In addition, the tracer time is used as the model time.

The justification and the consequence of asynchronous time stepping was discussed by Bryan
(1984). His study was focused on the convergence to the equilibrium state, with particular em-
phasis on changes of the speed of the waves. With the recent trend of climate study, a more
relevant question is how much such asynchronous time stepping can affect the climate variability
on seasonal to inter-annual times scales. Danabasoglu et al. (1996) carried out a series of nu-
merical experiments to find a practical way to spin up the oceanic circulation, by first using the

Ocean Modelling 5 (2002) 65–76

www.elsevier.com/locate/omodol

* Corresponding author.

E-mail address: rhuang@whoi.edu (R. Xin Huang).

1463-5003/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S1463-5003(02)00014-8

mail to: rhuang@whoi.edu


asynchronous time stepping and switching to the synchronous time stepping. According to their
numerical experiments, they suggested that after a sufficient equilibrium state has been reached
with asynchronous time steps, the model should be run with synchronous time step for 15 years in
order to reach a synchronous equilibrium. Wang (2001) also discussed the distortion of the
seasonal cycle when the asynchronous time stepping is used.

Despite the common practice of using the asynchronous time stepping in climate related
studies, errors induced by such a technique remain unclear. Since most oceanic general circulation
models of the new generation include the free surface elevation explicitly, accurately simulating
the barotropic mode of the oceanic circulation is of vital importance. Thus, in this note we will
focus on the issues related to the distortion of the physics associated with high frequency climate
variability, including both the barotropic mode and the baroclinic modes.

2. Model formulation

The notion of using different time steps for different property equations can be shown to be
equivalent to introducing an artificial small parameter, l, which is the ratio of the short to the
longer time steps. Thus, if we choose a short time step Dtv for the velocity time step and Dtq for the
time step in the tracer equations, a new parameter l ¼ Dtv=Dtq, usually small, implicitly alters
the equations of motions. In this note we make its presence explicit and discuss the dynamical
consequences of allowing l � 1. The equations are equivalent to the development in Bryan (1984)
although he considered only free wave solutions.

For this purpose we consider the linearized form of the primitive equations describing the time
evolution of large-scale motions forced by wind stress and buoyancy forcing. The governing
equations are:
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where l � 1 is a small parameter,H is a given function representing the applied buoyancy forcing
and sx, sy are the components of the turbulent frictional stresses within the fluid. The fluid is
contained between z ¼ 0 and z ¼ �D. Introducing the ‘‘compressed time’’,

s ¼ lt; ð2Þ
the time-dependent equations become
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The boundary conditions are:
(1) At the free surface, z ¼ g, P ¼ p=q0 ¼ 0. A linearization of this condition to the fixed upper

boundary z ¼ 0 leads to

P ¼ gg; or lPs ¼ gw at z ¼ 0: ð4aÞ
(2) At the bottom (assuming flat),

w ¼ 0; at z ¼ �D: ð4bÞ
Using the hydrostatic relation (1c), these conditions are reduced to
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We consider the solutions of Eqs. (3a)–(3c) for the case of a flat bottom ocean in the form of an
eigenfunction expansion of the form:
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X
n
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where the variables Un, Vn, Wn, gn are functions only of the horizontal coordinates. The eigen-
functions Fn and Gn satisfy:
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Note that the small parameter l serves in the eigenvalue problem to artificially increase the
magnitude of the buoyancy frequency. The nature of the eigenvalue problem for this vertical
structure equation is such that for large enough N even the lowest mode, with F1 independent of z
for oceanographically reasonable values of N, will become strongly z dependent. Thus, a small
enough value of l can severely distort the eigenstructure of the barotropic mode and thus the
projection on to it of the forcing. It will clearly also alter the eigenvalues, i.e., the equivalent
depths, hn and hence the propagation speed of all waves, particularly the barotropic mode.

The function Gn is related to Fn by the relations:

Gn ¼ � lg
N 2

dFn
dz

; ð8aÞ
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Fn ¼ hn
dGn

dz
: ð8bÞ

The density Eq. (3c) can be rewritten in terms of the pressure field through the aid of (1c),
yielding, taking one further z derivative:
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If Eqs. (1d), (3a), (3b) and (9) are multiplied by the eigenfunction Fn and integrated over the
depth of the fluid and use is made of the boundary conditions that w vanish at the bottom (5b)
and the pressure vanishes at the free surface (5a), it can easily be shown that the resulting
equations become:
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Thus, the equations take the form of the shallow water equations for a fluid with an equivalent
depth hn derived from the solution of (7a)–(7c). Note that the forcing in (10d) depends on the
projection of the heating on the vertical derivative of the nth eigenfunction. For oceanographic
realistic values of N, where the barotropic eigenfunction is independent of z this term would be
zero. However, as shown below, for small enough value of l, of the order of N 2D=g, this is no
longer the case so that the asynchronous integrations, equivalent to small l, will provide for an
artificial forcing of the lowest mode, no longer z independent. Higher modes will also be affected
but generally less so.

From the momentum equations the vorticity equation is obtained

bVn þ lfn;s ¼ �f ðUn;x þ Vn;yÞ þ curl~ssn; ð11Þ
where curl~ssn ¼ ð1=JnÞ

R 0

�D curl~sszFn dz.
For quasi-geostrophic motions on the b plane the s derivatives and the variation of f from its

constant value, as well as the direct effect of the wind stress are all negligible at lowest order in the
momentum equations although they enter the vorticity balance. This allows the definition of a
stream function,
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wn ¼ ggn=f0: ð12Þ
If in addition we make the long wave approximation so that the relative vorticity can be ignored
in (11):

bhnVn=f0 ¼
bhn
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For the barotropic mode the long wave approximation may be quantitatively in error due to the
large external deformation radius. However, the basic distortion due to asynchronous stepping is
quantitatively demonstrated with the long wave theory.

It follows that the evolution equation derived from (10d and 13) is now:
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We note that the lowest mode, n ¼ 0, is the ‘‘barotropic mode’’ and for moderate l is essentially

independent of z. In that case the principal forcing of the barotropic mode, from (14) must be the
wind stress curl since all other forcing terms in (14) are proportional to the vertical derivative of
F0. As we shall see below, when l is very small even the ‘‘barotropic’’ mode will have significant z
dependence but it is still true that the major projection of the forcing on the lowest mode will be
due to the wind stress curl. That being the case, it is natural to expect that the major error in-
volved with the barotropic mode will be forced by the wind stress as the detailed numerical
calculations presented below will demonstrate.

To illustrate the basic ideas we will discuss the simple case where N is constant. This simpli-
fication is especially apt since the major change in the modes occur near the upper boundary. The
solution of the eigenproblem (7a)–(7c) is

Fn ¼ cos½mnðzþ DÞ� ð15Þ
with
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which yields the eigenvalue relation
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in terms of which the equivalent depth is given by:
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From (13) it is clear that the speed of propagation in s units is given by
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where the subscript ðn;lÞ and ðn; 1Þ indicate the nth mode for the case with l arbitrary but
normally �1 and l ¼ 1.

In the ocean ðN 2D=gÞ ¼ �ðD=q0oz=oqÞ � 1. When l ¼ 1, i.e., for the case of synchronous time
stepping, the first mode, or the lowest mode, has a vertical structure that is almost independent of
depth, and it is thus called the barotropic mode. The solution for (17) is m1;1 	 N=

ffiffiffiffiffiffi
gD

p
. Thus, the

equivalent depth is h1;1 	 D. Since m1;1D � 1, the eigenfunction F1 ¼ cos½m1;1Dð1þ z=DÞ� is
essentially constant in z. For small l, the lowest eigenvalue increases with decreasing l finally
asymptoting to p=2.

Since h1;1 	 D, the speed of the first mode in the oceans is

c1;1 ¼
bgD
f 2
0

: ð19Þ

Since N 2D=g � 1, for the case of l PN 2D=g the solution of (17) is
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Recall the speed defined above is for the ‘‘compressed’’ time s, and the real speed in the normal
time t is

C1;l ¼ dx
dt

¼ l
dx
ds

� �
l

¼ lc1;l 	 lC1;1: ð23Þ

Therefore, the lowest mode propagates with a speed much smaller than that of the standard
barotropic Rossby waves.

On the other hand, as long as l 	 PN 2D=g, the eigenvalues for higher modes (m > 1) are
essentially constant, plus a small correction term that is proportional to l, Table 1. As a result, the
speed of the higher baroclinic modes in the case of asynchronous stepping is only slightly slower
than that of synchronous time stepping.

We consider the case with forcing due to wind stress and surface trapped buoyancy forcing that
is switched on and remains constant thereafter. If (14) is solved in the region x6 xe, the solution
breaks into two parts:

(1) For x6 xe � Cnt

wn ¼ Ws
nðx; yÞ � Ws

nðxþ Cnt; yÞ; ð24Þ

Table 1

Eigenvalues of the first three modes for the case of N 2D=g ¼ 0:002

1=l 1.0 10 20 30 40 50 70 100

mD1 0.04471 0.14095 0.19867 0.24253 0.27913 0.31105 0.36566 0.43284

mD2 � p 0.00064 0.00635 0.01268 0.01898 0.02526 0.03150 0.04392 0.06234

mD3 � 2p 0.00032 0.00318 0.00636 0.00953 0.01271 0.01587 0.02220 0.03166
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where the steady solution is
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For convenience we will also use a standardized amplitude function

hn ¼
N 2

gf0
Hn: ð26Þ

(2) For xP xe � Cnt

wn ¼ ws
n: ð27Þ

For climate study, the tracer time step is about 20–100 times larger than the velocity time step.
As an example, the structure of the first and second eigenfunctions for the case when
N 2D=g ¼ 0:002, l ¼ 0:001 and l ¼ 0:05 are shown in Figs. 1 and 2. It is clear that the first mode is
no longer a strict barotropic mode, and the second mode is no longer a strictly baroclinic mode
although for l ¼ 0:05 the changes are small. Consequently, for the same surface-trapped buoy-
ancy forcing, using the asynchronous time stepping the projection onto the first mode will be
much larger than that for the synchronous time stepping.

To illustrate the idea, we choose a surface-trapped step function for the buoyancy forcing with
no wind stress

H ¼ 1 06 z6 � d;

H ¼ 0 � d < z6 � D;

where d ¼ 0:1D. As the ratio of time steps 1=l increases, the ratio of the speed of the first mode
increases, closely following the rule in (22). At the same time, the projection onto the first mode
increases in proportion, but the projection onto higher modes decline, Fig. 3.

Note that for very small l as shown in Fig. 1 the lowest mode for F now is strongly z dependent
while for only moderately small l, as shown in Fig. 2, the mode remains essentially z independent,

Fig. 1. Structure of the first and second eigenfunctions for the case of N 2D=g ¼ 0:002 and l ¼ 0:001.
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i.e., barotropic in structure. We therefore expect, in the latter case, that the major forcing of the
lowest mode will be due to the wind stress.

3. Application to an oceanic general circulation model

We have carried out numerical experiments to test the basic idea, using a newly developed
oceanic circulation model, the pressure coordinate ocean model, based on the pressure-sigma
coordinates (Huang et al., 2001). This new model is a truly non-Boussinesq model, so it can
simulate the time evolution of the circulation much more accurately.

The model ocean is a square basin covering from the Equator to 60� N, and 60� wide. The
model basin was at rest initially and the initial temperature was the global mean potential tem-
perature obtained from Da Silva et al. (1994) climatology and salinity was 35. The model ocean is
4000 m deep, and it has 15 layers. The potential temperature at the top and bottom of the model
ocean are 13.62� and 1.01� respectively, and the difference in potential density is 1.80 r-unit, so

Fig. 2. Structure of the first and second eigenfunctions for the case of N 2D=g ¼ 0:002 and l ¼ 0:05.

Fig. 3. (a) Relative amplitude hR ¼ h1;1=h1;l and relative speed CR ¼ C1;1=C1;l of the first mode as functions of the time

step ratio 1=l. (b) Amplitude of the first three modes, hn, as functions of the time step ratio k.
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N 2D=g ¼ 0:0018, which is quite close to the value of 0.002 used in the discussion above. The time
step for the velocity is 1.2 h, and the time step for the temperature is 24 h, thus l ¼ 0:05.

In the first experiment, the ocean is driven by the wind stress only. Wind stress is taken as the
climatological zonally mean zonal wind stress, plus a seasonal cycle whose amplitude is 30% of the
annual mean wind stress, i.e., sx ¼ ð1:0þ 0:3 sinxtÞsx0, where x corresponds to an annual fre-
quency and sx0 is the climatological zonally mean zonal wind stress. Furthermore, the wind stress is
imposed for three grids next to the eastern boundary, so away from the eastern boundary the
ocean is force-free and the Rossby waves diagnosed there should be the free Rossby waves. The
model was run, using both the synchronous and asynchronous time stepping. The errors induced
by the asynchronous time stepping propagate with two speeds, as shown in Fig. 4. At this latitude,
the undistorted barotropic Rossby waves take about one week to cross the basin of 60� wide. The
fast speed of the errors propagation corresponds to a value of 60�=140 days, so it is roughly 20
times slower than the undistorted barotropic waves.

Note that phase speed of the Rossby waves discussed above applies to long waves, and these
take about 0.5 day to cross the basin at 30� N. Of course, for the long waves the phase speed
and group velocity are the same. On the other hand, the corresponding group velocity for short
waves is

cg;x ¼ �
b l2 þ f 2

gD � k2
� �

k2 þ l2 þ f 2

gD

� �2
:

The experiment was driven by the zonal-mean wind stress averaged over the global oceans
which has a wave length in the meridional direction of about 4500 km. Since the wind stress is
localized near the eastern boundary, it will excite all x wave numbers. However, the k ¼ 0 con-
tribution will correspond to the signal crossing the basin fastest and it will take 7 days to cross the
basin.

As discussed above, the projection of the perturbation onto the second mode in the case of
asynchronous time stepping is also different from the case of synchronous time stepping. As listed
in Table 2, the standard projection function onto the second mode is �0.0975 for the case of
l ¼ 1, while it is �0.0904 for the case of l ¼ 0:05. In addition, the the speed of the undistorted
and distorted second modes are slightly different, with a ratio of 0.992. With the difference in

Fig. 4. The errors of the sea surface elevation induced by asynchronous time stepping, taking along a section at 30� N,

in mm.
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amplitude and phase speed, a simple initial value problem can be set up similar to the example of
the previous section and it demonstrates that substantial errors can be induced along the wave
pathway. As shown in Fig. 4b, there is indeed a group of wave packages due to the error induced
by the asynchronous time stepping that propagate westward with a speed of about 60�=12 years,
corresponding to the first baroclinic Rossby waves. The results from this experiment indicates that
using asynchronous time stepping to study climate variability for annual to decadal times scales
may induce substantial distortions to the solutions.

The errors in the sea surface elevation are also compared with the free surface elevation and its
annual cycle, removing the trend by moving averaging over one-year window, Fig. 5. Since errors
have the same amplitude as the seasonal cycle, they are not acceptable. Note that the errors are
roughly half year out of phase, compared with the signals. The baroclinic signals arrive this
station after year 3, and the thermocline (which can be seen from the sharp increase of the free
surface elevation) is gradually established after the passing of the first baroclinic Rossby waves.
Although the amplitude of the seasonal cycle remains roughly unchanged, the errors are no-
ticeably large as the first baroclinic waves pass through this station between year 4 and year 6.
After the passage of the first baroclinic waves, the amplitude of the errors is reduced to the
previous level.

Table 2

Comparison for the projections onto the first and second modes for the case of l ¼ 0:05

l F1ð0Þ F2ð0Þ G1ð0Þ G2ð0Þ c1;l=c1;1 c2;l=c2;1 h1 h2

1.0 0.9990 �1.00000 0.04469 �0.00064 1.0 1.0 c�0.00019 �0.0975

0.05 0.9803 �0.99992 0.19737 �0.01268 0.0506 0.992 �0.00378 �0.0904

Fig. 5. Free surface elevation (heavy line), the seasonal cycle (thin line) and the errors induced by asynchronous time

stepping (dashed line), taking at a station at the center of the basin (30� E, 30� N).
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In the second experiment, the ocean is driven by the same zonal wind stress; however, the whole
basin is forced by the wind stress. In the third experiment, thermal forcing is added: the sea
surface of the model ocean is relaxed to the reference temperature that includes the seasonal cycle
Tr ¼ Tr;0 þ DTrðyÞ sinxt, where Tr;0 is the zonally mean sea surface temperature from Da Silva et al.
(1994) climatology, DTrðyÞ ¼ 2:0þ 3:0� /=D/, (D/ ¼ 60�).

In this case the error induced by the wind-forcing case is much larger than the previous ex-
periment because the whole basin is subject to the wind stress forcing; however, adding the
thermal forcing anomaly does not change the errors much, Fig. 6. Thus, errors induced by the
buoyancy forcing are relatively small for a small l. As seen from Fig. 6, errors in the free surface
elevation have the same amplitude as the seasonal cycle of the free surface itself; thus, the seasonal
cycle of the model ocean is severely contaminated.
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Fig. 6. Errors in the free surface elevation induce by asynchronous time stepping for the case with wind stress only
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wind stress and thermal relaxation (thin line), taking at a station at the center of the basin (10� E, 30� N).
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