
The Three-Dimensional Steady Circulation in a Homogenous Ocean Induced
by a Stationary Hurricane

ZHU MIN LU

Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Guangzhou, China

RUI XIN HUANG

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Manuscript received 8 June 2009, in final form 15 January 2010)

ABSTRACT

Based on the classical Ekman layer theory, a simple analytical solution of the steady flow induced by

a stationary hurricane in a homogenous ocean is discussed. The model consists of flow converging in an inward

spiral in the deeper layer and diverging in the upper layer. The simple analytical model indicates that both the

upwelling flux and the horizontal transport increase linearly with increasing radius of maximum winds.

Furthermore, they both have a parabolic relationship with the maximum wind speed. The Coriolis parameter

also affects the upwelling flux: the response to a hurricane is stronger at low latitudes than that at middle

latitudes. Numerical solutions based on a regional version of an ocean general circulation model are similar to

the primary results obtained through the analytical solution. Thus, the simplifications made in formulating the

analytical solution are reasonable. Although the analytical solution in this paper is sought for a rather ide-

alized ocean, it can help to make results from the more complicated numerical model understandable. These

conceptual models provide a theoretical limit structure of the oceanic response to a moving hurricane over

a stratified ocean.

1. Introduction

Hurricanes (typhoons) constitute an important com-

ponent of the atmosphere–ocean system. Recent studies

suggest that they contribute a noticeable share of the

mechanical energy input into the ocean, acting like

a blender in the ocean, and thus significantly influence the

ocean heat transport (Emanuel 2003; Sriver and Huber

2007; Liu et al. 2008; Jansen and Ferrari 2009). However,

it is clear that our understanding of these strong nonlinear

events remains rather rudimentary at best.

Oceanic response to a hurricane has been studied

extensively over the past half century. The early studies

were based on the fundamental issues of hurricane-

induced motions in the ocean by means of rather idealized

models. For example, Longuet-Higgins (1965) studied the

response of a stratified ocean to a stationary or moving

wind system. Many aspects of hurricane dynamics have

been explored by previous investigators such as Geisler

(1970), Price (1981, 1983), Greatbatch (1983, 1984), Shay

et al. (1989), and Price et al. (1994). Most of these studies

have focused on the response of the upper ocean to hur-

ricane forcing, particularly cooling of the upper ocean and

mechanical stirring induced by the strong wind stress as-

sociated with a hurricane.

There have been a few studies focused on the deep

ocean response to hurricanes (Chang 1985; Shay et al.

1989; Ginis and Sutyrin 1995). Recently, there are more

observations highlighting the importance of deep ocean

response. For example, satellite observations suggest

that the hurricane-induced phytoplankton blooms may

be mainly attributed to the injection of nutrients from

depths as deep as 100 m (Babin et al. 2004; Gierach and

Subrahmanyam 2008). Because of the low level of nu-

trient concentration in the Sargasso Sea as shown by

ocean color analysis, the chlorophyll-a (chl-a) enhance-

ment induced by a hurricane must be associated with the

upwelling of cold water from the deep ocean (Babin et al.

2004).

Hence, it is of great interest to explore the impact of

hurricanes on the circulation of the middle and bottom
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parts of the water column. The prominent hurricane-

induced upwelling feature within the core of a hurricane

is associated with the outward Ekman transport. In fact,

the strong upwelling in the center of a hurricane requires

a continuous supply of water from the deep ocean.

Although it is rather difficult to observe the response in

the deeper layer, a few observations have shown that the

deep ocean responses to moving hurricanes in the form of

near-inertial oscillation (Shay and Elsberry 1987; Morozov

and Velarde 2008). Using current meter measurements,

Shay and Elsberry (1987) have reported that bottom cur-

rents increased significantly as the features of rapid re-

sponse. The theoretical study of Greatbatch (1984) has

shown that the response to a ‘‘large’’ enough or ‘‘fast’’

enough hurricane will not feel the effect of the ocean

stratification and extend through the depth of the ocean.

Over the past 10–20 yr, the study of oceanic response

to hurricanes has been extended and refined in many

different directions. Based on these new research re-

sults, our understanding of hurricane-induced circula-

tion has been greatly extended. With such a wealth of

new information, there is, however, a need to put it into

a simple and clear framework.

To build up such a framework, we must start from the

basic foundation. For the case of a hurricane moving

over a continuously stratified ocean, the analytical solu-

tion for the oceanic response is extremely complicated; so

far, no analytical solution has been found. Thus, we begin

by examining the case of a steady hurricane blowing over

a homogenous ocean. Under such assumptions, a simple

analytical solution can be found; such an analytical so-

lution is a great tool helping us to understand the fun-

damental dynamic aspects of hurricane-induced motions

in the ocean. Therefore, although such a case does not

exist in the real world, this model provides us with a fun-

damental framework to study the variation of oceanic

response resulting from the gradual increase of moving

velocity and stratification.

As the second step, we will move to cases with a moving

hurricane over a continuously stratified ocean. With the

knowledge building up from the first step, it will be much

easier to understand how the circulation changes in re-

sponse to the gradually increasing moving speed of the

hurricane and how the upwelling and near-inertial oscil-

lations change in response to the gradual buildup of

stratification.

Hurricanes are one of the most powerful drivers of

oceanic circulation. Although whether hurricanes can

contribute to the global oceanic circulation is under de-

bate, it is clear that their contribution to local circulation

is vitally important, and that is the focus of this study. In

the upper ocean, strong wind stress drives radial outward

Ekman transport. This radially outward flow is supported

by the balance between frictional force and the Coriolis

force.

Because of the continuity of mass, there must be a

strong upwelling underneath the center of the hurricane

to supply this mass flux. In the subsurface layer immedi-

ately below the surface layer, frictional force is negligible

and the flow is primarily cyclo-geostrophic. Thus, any

inward cyclo-geostrophic flow must be balanced by the

corresponding radial pressure gradient force. Because we

assume that the hurricane is axisymmetric, there is no

pressure gradient in the azimuthal direction. Therefore,

under the assumption of a steady-state circulation, the

upwelling beneath the center of the hurricane cannot be

supplied with mass from the middle depth of the ocean.

The only way to supply this upwelling in the center of the

hurricane is, thus, from the radial inflow in the bottom

boundary layer. This argument applies to a stationary

hurricane over a nonstratified ocean only. In the case of

a moving hurricane and a stratified ocean, the supply of

water feeding the wind stress driven upwelling in the

center of a hurricane can come from rather shallow depth.

Because of the existence of bottom friction, an in-

ward mass flux is possible under the balance between

the Coriolis force, the inward pressure gradient, and the

bottom friction. Because friction in the middle of the

water column is assumed to be negligible, the inward ra-

dial pressure gradient required for the maintenance of this

inflow bottom boundary layer is linked to the deformation

of the sea surface elevation. At the middle level, this ra-

dial pressure gradient is balanced by the Coriolis force

associated with an azimuthal cyclo-geostrophic velocity.

Therefore, the circulation driven by a stationary hur-

ricane consists of four components: the outward Ekman

transport in the upper ocean, the inward Ekman transport

in the bottom boundary layer, the upwelling in the center

of the hurricane, and the azimuthal cyclo-geostrophic

current between the top and bottom boundary layers.

These four components combine and are manifested as a

beautiful eddy over the whole depth of the ocean (Fig. 1).

It is worthwhile to emphasize that, according to

Newton’s third law of motion and neglecting wave radi-

ation, the mass transport in the atmospheric boundary

layer is exactly the same as the mass transport in the

oceanic boundary layer in the upper ocean; that is,

M
atmo

5 M
ocean,top

.

Note that in this formula we have omitted the azimuthal

component of the Ekman transport driven by the radial

wind stress, which should also obey the same constraint.

Similarly, the corresponding azimuthal component of

the ageostrophic flow in the bottom boundary layer will

be omitted in the discussion later. Because flow in the
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middle depth of the ocean is assumed to be nearly in-

viscid, with very little ageostrophic component, the total

amount of upwelling and the total amount of inward

mass transport in the bottom boundary layer should be

nearly the same as the outward mass transport in the

atmospheric and oceanic boundary layer in the upper

ocean; that is,

M
atmo

5 M
ocean,top

ffiM
ocean,up

ffiM
ocean,bot

.

In this study, we will discuss the vertical structure of

circulation induced by a stationary hurricane using an

analytical model. Most importantly, an analytical solu-

tion can provide a simplified and succinct picture of the

circulation. This paper is outlined as follows: An analyt-

ical solution for the circulation induced by a stationary

hurricane is presented in section 2. Section 3 discusses the

relationships between accumulated transport and the

physical parameters of a hurricane. A regional version of

the Massachusetts Institute of Technology ocean general

circulation model (MIT OGCM) described in Marshall

et al. (1997) is utilized in section 4 to validate the structure

of the circulation induced by a stationary hurricane. Fi-

nally, conclusions are summarized in section 5.

2. Analytical solutions for the circulation driven by
a stationary hurricane

As the first step, we examine the oceanic response to a

stationary hurricane. The wind stress pattern of a hurri-

cane can be separated into the azimuthal and radial

components. The azimuthal component of the wind

drives an outward radial Ekman transport in the upper

ocean; the inward radial wind component drives a cy-

clonic Ekman transport in the azimuthal direction;

however, this component of Ekman transport does not

contribute to the upward motion below the Ekman

layer. Thus, it is not linked to the circulation pattern

discussed later, and it will be omitted in the following

discussion.

Both the hurricane wind field and the induced ocean

circulation are axisymmetric. This problem can be ana-

lyzed, using the cylinder coordinate system (r, u, z) (Fig. 2).

The origin of the coordinates is at the center of the

FIG. 1. Sketch of the oceanic circulation induced by an axisymmetric and stationary hurricane.
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hurricane and z increases upward with z 5 0 on the mean

sea surface. For simplicity, the model is formulated for

a homogeneous ocean on an f plane, with a flat bottom.

The ocean depth H is assigned 1200 m in this study.

To obtain concise analytical solutions, we also assume

that the curvature term (the centrifugal force term) is

negligible compared with other terms in the horizontal

momentum balance. The circulation including the cur-

vature term will be examined in connection with the

numerical solutions discussed in section 4. Neglecting

the time-dependent terms and the advection terms, the

horizontal momentum equations are

�f y
u

5�1

r

›p

›r
1

›

›z
A

z

›y
r

›z

� �
and (1a)

f y
r
5

›

›z
A

z

›y
u

›z

� �
, (1b)

where yr and yu are the radial and azimuthal velocity, p is

pressure, r is density of seawater, f is the Coriolis pa-

rameter, and Az is the vertical eddy viscosity.

The parameterization of vertical viscosity is one of the

major unsettled problems in dynamical oceanography.

Because it is related to the availability of mechanical

energy sustaining turbulence in the ocean, it must vary

with time and space. In particular, the physical processes

that regulate the supply of turbulent kinetic energy in the

bottom boundary layer underneath a hurricane remain

largely unknown. Because of this great uncertainty, we

will make use of a bold assumption that Az is constant

throughout the water column. This assumption should

certainly affect the structure of the solution, and the re-

sults should be interpreted with caution.

Equations (1a) and (1b) can be simplified by decom-

posing the velocity into two parts, the geostrophic and

ageostrophic components:

y
r
5 y

r,geo
1 y

r,ageo
5 y

r,ageo
and, (2a)

y
u

5 y
u,geo

1 y
u,ageo

5
1

r f

›p

›r
1 y

u,ageo
, (2b)

where yr,geo and yu,geo are the radial and azimuthal

geostrophic velocities, which are in balance with the

pressure gradient. Because the solution is assumed axi-

symmetric, there is no azimuthal pressure gradient, and

the corresponding geostrophic velocity component

vanishes, yr,geo 5 0. We also assume that the vertical

shear of the geostrophic velocity can be neglected, so

that the ageostrophic velocity (yr,ageo, yu,ageo) satisfies the

following equations:

� f y
u,ageo

5
›

›z
A

z

›y
r,ageo

›z

� �
and (3a)

f y
r,ageo

5
›

›z
A

z

›y
u,ageo

›z

� �
. (3b)

Introducing a complex velocity,

W
ageo

5 y
r,ageo

1 iy
u,ageo

, (4)

Eqs. (3a) and (3b) are reduced to

d2W
ageo

dz2
� i

f

A
z

W
ageo

5 0. (5)

The basic solution of Eq. (5) is

W
ageo

5 (c
1
1 id

1
)elz 1 (c

2
1 id

2
)e�lz, l 5 (1 1 i)/d,

(6)

where d is the Ekman depth, which is defined as

d 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

z
/ f

q
. (7)

Four constraints are needed to determine solution (6).

At the surface, wind stress in the azimuthal direction tu

gives rise to a boundary condition

rA
z

dW
ageo

dz

�����
z50

5 rA
z
l[(c

1
1 id

1
)� (c

2
1 id

2
)]

5 itu; that is, (8)

FIG. 2. The surface and bottom Ekman layers and the geostrophic

current in the cylinder coordinate system used in formulating the

analytical solution.
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(c
1
� c

2
) 1 i(d

1
� d

2
) 5

1 1 i

2

dtu

rA
z

. (9)

The real–imaginary components of Eq. (9) provide two

constraints. On the sea floor z 5 2H, there is no geo-

strophic velocity in the radial direction, and the no-slip

condition applies to the radial ageostrophic velocity and

gives rise to

e�H/d[c
1

cos(H/d) 1 d
1

sin(H/d)]

1 eH/d[c
2

cos(H/d)� d
2

sin(H/d)] 5 0. (10)

In the azimuthal direction, the sum of geostrophic and

ageostrophic velocity should vanish on the sea floor.

However, the geostrophic velocity in the azimuthal di-

rection in the subsurface ocean is one of the unknowns.

To overcome this problem, we can use the following

constraint: the total volume transport in the radial di-

rection integrated over the whole depth of the ocean

should be zero, as required by the mass continuity in a

steady state. This constraint can be written in the fol-

lowing form:

Re

ð0

�H

[(c
1

1 id
1
)elz 1 (c

2
1 id

2
)e�lz] dz

� �
5 0. (11)

Equations (9)–(11) consist of four equations for four

unknowns, c1, d1, c2, and d2, and they can be written in

the matrix form

AX 5 B: (12)

A 5

1 0 �1 0

0 1 0 �1

e�H/d cos
H

d
e�H/d sin

H

d
eH/d cos

H

d
�eH/d sin

H

d

e�H/d 2 cos
H

d
� sin

H

d

� �
e�H/d cos

H

d
1 2 sin

H

d

� �
�eH/d sin

H

d
�eH/d cos

H

d

2
6666664

3
7777775

, (13)

B 5 [ dtu/2rA
z

dtu/2rA
z

0 dtu/rA
z ]T, and (14)

X 5 [ c
1

d
1

c
2

d
2 ]T. (15)

After solving Eq. (12), the corresponding ageostrophic

flow is

y
r,ageo

5 ez/d c
1

cos
z

d
� d

1
sin

z

d

� 	
1 e�z/d c

2
cos

z

d
1 d

2
sin

z

d

� 	

and (16a)

y
u,ageo

5ez/d c
1

sin
z

d
1d

1
cos

z

d

� 	
1e�z/d �c

2
sin

z

d
1d

2
cos

z

d

� 	
.

(16b)

The geostrophic velocity in the ocean interior can be

derived from the constraint that the total azimuthal

velocity on the sea floor be zero; that is,

y
u,geo

5�y
u,ageo

���
z5�H

5 e�H/d c
1

sin
H

d
� d

1
cos

H

d

� �

� eH/d c
2

sin
H

d
1 d

2
cos

H

d

� �
. (17)

Within the framework of our model, the geostrophic

velocity in the subsurface ocean has no vertical shear. If

H . 2d, e2H/d is much smaller than eH/d and is thus

negligible. After some manipulation, we obtain the fol-

lowing approximate formula: yu,geo ’ dtu/rAz.

According to Eq. (12), the circulation induced by

a hurricane is controlled by three parameters: the ocean

depth, the Ekman depth, and the wind stress. In particu-

lar, the parameterization of Ekman depth is a crucial part

of the analytical solution. Although the structure of the

Ekman layer in the ocean was proposed 100 yr ago, it had

not been confirmed by in situ observations. It was not until

the middle of the 1980s that a clear picture of the Ekman

layer was observed in the upper ocean through instru-

mentation (Price et al. 1987). Furthermore, in situ ob-

servations indicate that the structure of the surface

circulation is different from the Ekman spiral predicted by

the simple theory based on constant viscosity (Chereskin

and Roemmich 1991; Price and Sundermeyer 1999).

Turbulent motions in the Ekman layer crucially de-

pend on the availability of mechanical energy to sustain

the strong dissipation. In most cases, energy supporting

mixing in the upper ocean comes primarily from surface

wind. Thus, vertical viscosity in the Ekman layer is not

constant; instead, it may depend on the wind stress and

the latitude. Instead of using Eq. (7), one can also use the

empirical formula
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d 5 g

ffiffiffiffiffiffiffiffiffiffiffi
t/r f 2

q
, (18)

where t is the magnitude of wind stress and g ’ 0.25 2

0.40, determined from observations (Coleman et al.

1990; Price and Sundermeyer 1999). Based on six data-

sets available at that time, Wang and Huang (2004)

found that the best-fit value of g is 0.5.

Furthermore, the Ekman layer involved in the hurri-

cane study has to deal with cases of extremely strong

winds, beyond the normal range of a bulk formula. Thus,

there are no adequate in situ observations to calibrate

the parameterization of vertical momentum mixing and

Ekman layer depth. As a compromise, both Eqs. (7) and

(18) will be utilized in this study to investigate the sen-

sitivity to the parameterization of vertical viscosity. In

particular, we will examine the circulation induced by

hurricanes under different parameterizations.

a. Wind stress profile of a hurricane

A hurricane rotates similar to a rigid body from its

center to the radius of the maximum winds, and outside

of this radius winds decay rapidly with radius (Emanuel

2003). There are some simple models of the wind stress

describing the near-surface azimuthal wind of a hurri-

cane, such as a modified Rankine vortex (Ginis and

Sutyrin 1995) and the Holland wind stress model (Holland

1980). For simplicity, we adopt the following model for the

angular velocity distribution:

v 5
ar r , r

0

arb11
0 /rb r $ r

0

(
, (19)

where a and b are constants and r0 is the radius of

maximum wind speed. In common practice, the maxi-

mum wind speed Vmax is more frequently specified as

a basic parameter for a hurricane, and constant a can be

inferred from

a 5 V
max

/r2
0. (20)

For simulating hurricane Katrina in 2005 (Shen et al.

2006), the maximum wind speed Vmax is approximately

60 m s21, and other parameters are b 5 2.95 and r0 5

50 km.

Based on Eq. (19), the corresponding azimuthal ve-

locity is

V 5
V

max
r2/r2

0 r , r
0

V
max

rb�1
0 /rb�1 r $ r

0

.

(
(21)

The azimuthal wind stress is calculated from the bulk

formula

tu 5 r
a
C

D
V2 5 r

a
C

D
V2

maxF(r), (22)

where ra 5 1.26 kg m23 is air density; CD 5 2.5 3 1023 is

the drag coefficient; and F(r) is a piecewise function,

F(r) 5
(r/r

0
)4 r , r

0

(r
0
/r)2(b�1) r $ r

0

.

(
(23)

The bulk Eq. (22) is commonly used, and it is based on

observations of low or moderate wind speed. Recent

studies indicate that drag coefficients at high wind

speeds are much more complicated (Powell et al. 2003;

Donelan et al. 2004; Black et al. 2007). A more accurate

parameterization of wind stresses at the high wind

speeds typical of hurricanes is a hotly debated issue and

a research frontier. A thorough review and discussion is

beyond the scope of our study. For simplicity, we set the

drag coefficient as a constant in this study. The peak of

wind speed appears clearly in radius 50 km and the

corresponding maximum wind stress is approximately

9 N m22 (Fig. 3). To explore the sensitivity of the ana-

lytical model to parameterization of turbulent mixing in

the Ekman layer, we present solutions obtained from

two parameterizations in the following.

b. Solutions for a fixed viscosity Az 5 0.5 m2 s21

Because of the strong wind associated with the sub-

tropical cyclones, mixing in the ocean is greatly en-

hanced (Huang et al. 2007; Sriver and Huber 2007);

hence, for a model based on constant vertical viscosity,

a large value should be used. In this section, we set Az 5

0.5 m2 s21 and d is calculated from (7). From Eq. (12), it

is readily seen that solution (15) depends on the wind

stress only. Because wind stress is a function of r only,

the ageostrophic flow (16) can be rewritten as the

product of a function of z and a function of r:

y
r,ageo

5 ymax
r,ageo(z)F(r) and (24a)

y
u,ageo

5 ymax
u,ageo(z)F(r), (24b)

where ymax
r,ageo and ymax

u,ageo are the radial and azimuthal

components of the ageostrophic flow forced by the

maximum wind stress. Because the flow is axisymmetric,

the continuity equation is

1

r

›

›r
(ry

r,ageo
) 1

›w

›z
5 0, (25)

where w is the vertical velocity. Integrating (25) leads to

w 5�
ðz

�H

1

r

›

›r
(ry

r,ageo
) dz 5 G(z)P(r), where (26)
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G(z) 5�
ðz

�H

ymax
r,ageo(z) dz and (27)

P(r) 5
5r3/r4

0 r , r
0

(3� 2b)r2b�2
0 /r2b�1 r $ r

0

(
. (28)

The flow in the r–z plane can be conveniently described

in terms of a streamfunction

c(z, r) 5

ðr

0

w 3 2pr dr 5 G(z)Q(r), where (29)

Q(r) 5
2pr5/r4

0 r , r
0

2pr2b�2
0 /r2b�3 r $ r

0

(
. (30)

The ageostrophic velocity profiles induced by the

maximum wind stress (9 N m22) at 188 and 368N are

plotted in Fig. 4. According to Eq. (7), boundary layer

thickness is inversely proportional to the square root of

the Coriolis parameter, and this can be seen from Fig. 4.

As a result, the geostrophic flow regime between the

upper and lower boundary layers at middle latitudes is

more pronounced than that at low latitudes. The strength

FIG. 3. Radial profile of (a) the wind speed and (b) wind stress.

FIG. 4. The ageostrophic velocity profiles induced by the maximum wind stress (9 N m22) at (a) 188 and (b) 368N.
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of the geostrophic flow in the middle depth range can be

inferred from the lower boundary condition (17) that the

total azimuthal velocity vanishes at the sea floor. The flow

in the upper (bottom) Ekman layer appears in the form of

an outward (inward) spiral. The geostrophic and ageo-

strophic flows induced by the same wind stress are

stronger at low latitudes than those at middle latitudes.

This has a very important implication that hurricane at

low latitudes may contribute more mechanical mixing.

According to formulas (24)–(30), the ageostrophic

flow can be concisely described in terms of modal

functions F(r), P(r), Q(r), and G(z), shown in Figs. 5 and

6. Function F(r) represents the nondimensional ageo-

strophic flow profile, so it is similar to the wind stress

profile in Fig. 2b. The amplitude of the flow increases

with r to the maximum value at r 5 r0 and then decays to

zero at about 200 km from the center (Fig. 5b). In the

radial direction, both the vertical velocity and upwelling

flux attain their maximum at r 5 r0; however, vertical

velocity becomes negative outside the core of the

hurricane (i.e., for r $ r0), and this is consistent with the

observation that downwelling appears around the pe-

riphery of the maximum wind band of a hurricane

(Figs. 5b,c).

The vertical velocity and upwelling flux vary almost

linearly in the Ekman layers, Fig. 6; however, they are

nearly constant within the core of the geostrophic regime

at the middle depth. It is clear that, using this parame-

terization, the Coriolis parameter (or the latitudinal

location of the hurricane) has no impact on the radial

variations of vertical velocity and upwelling flux (Figs.

5b,c); however, in the geostrophic layer the vertical

and upwelling fluxes at 188N are about twice those at

368N (Fig. 6). Thus, the vertical response for the same

hurricane is stronger at low latitudes than at middle

latitudes.

c. Solutions for d 5 g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q

Under this assumption, vertical viscosity can be writ-

ten as

A
z

5 g2tu/2f r; (31)

thus, vertical viscosity is proportional to wind stress and

inertial frequency. Because wind stress varies with the

radial coordinate, vertical viscosity is now a function of

radial coordinate as well.

We also assume that Eq. (31) applies to the whole

water column, including the bottom boundary layer. Al-

though Eq. (18) is based on observations, its application

FIG. 5. The modal functions: (a) F(r) for ageostrophic velocities; (b) P(r) for the upwelling velocity; and (c) Q(r)

for the upwelling flux.

FIG. 6. The modal function G(z) for vertical velocity and

upwelling flux.
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to strong wind with large wind shear remains to be re-

examined through further study. In particular, parame-

terization of turbulent motions in the bottom boundary

layer is a great challenge, and results based on such an

assumption should be interpreted with caution.

In the present case, the ageostrophic velocity cannot

be expressed in a form similar to Eq. (24). The ageo-

strophic velocities for viscosity [Eq. (31)] are shown in

Fig. 7. Compared with Fig. 4, it is readily seen that the

ageostrophic flows are much weaker than those of a con-

stant viscosity, especially in the regime of high wind

speed, and this is due to the fact that, under assumption

(31), viscosity in high wind regime is very strong. A

noteworthy fact in Fig. 7 is that, although the geostrophic

flow�y
u,ageo

���
z5�H

occurs at the radius of maximum wind

speed, the maximum radial velocity does not; instead,

double peaks appear on both sides of r 5 r0.

Assuming that the boundary layer at the sea floor is

well separated from that on the sea surface, flow in the

bottom Ekman layer is directly linked to the geostrophic

flow at the middle depth. Thus, when the geostrophic

flow at the middle level is enhanced, flux in the bottom

boundary layer increases. However, under extremely

strong wind conditions, the Ekman depth defined by

(31) is so thick that the Ekman layers in the upper ocean

and on the sea floor merge. As a result, flow in the

bottom Ekman layer is affected not only by the geo-

strophic flow but also the surface wind stress. Under the

same conditions, the double-peak structure of radial

velocity at middle latitudes (Fig. 7c) is less pronounced

FIG. 7. The ageostrophic velocity of the analytical solution under the assumption of Az 5 g2tu/2fr at (top) 188N and

(bottom) 368N for (left) r and (right) u.
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than that at low latitudes (Fig. 7a), because the Ekman

depth is shallower at middle latitudes and these two

boundary layers are well separated.

d. The common feature of solutions for
Az 5 0.5 m2 s21 and d 5 g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q

Notably, because of

ð0

�H

W
ageo

dz 5 [(tu � tu
b) 1 itr

b]/r f , (32)

where tb
r and tb

u are radial and azimuthal bottom stress,

respectively, Eq. (11) implies that the azimuthal bottom

stress is equal to the azimuthal surface stress. On the

other hand, tb
r can be written as

tr
b 5

rdf

2
c

1
e�H/d sin

H

d
1 cos

H

d

� �


1 d
1
e�H/d sin

H

d
� cos

H

d

� �
1 c

2
eH/d sin

H

d
� cos

H

d

� �

1 d
2
eH/d sin

H

d
1 cos

H

d

� ��
. (33)

Assuming H . 2d, we have eH/d � e2H/d. After some

manipulations, we obtain the approximate expression

tr
b ’�tu. (34)

Therefore, under the assumption H . 2d, the choice of

vertical viscosity does not affect the bottom stress, and

the magnitude of bottom stress is always larger than that

of surface stress and varies linearly with the magnitude

of surface stress.

A very important feature of the analytical model is

that azimuthal ageostrophic velocity in the bottom

boundary layer is much stronger than that in the surface

boundary layer, as can be seen from Figs. 4 and 6. Strong

bottom boundary velocity and shear imply strong ero-

sion of seabed. The combination of the azimuthal and

radial velocity gives rise to the inward spiral velocity

field, which may induce strong movement of sediment

on the sea floor.

The vertical structure can be illustrated by a stream-

function in the r–z plane, which represents the upwelling/

downwelling (Fig. 8). For a stationary hurricane, the in-

duced upwelling in the core brings water from the bottom

Ekman layer on the sea floor to the upper ocean, as

sketched in Fig. 1. In this sense, the oceanic circulation

induced by a stationary hurricane is a giant eddy spanning

the entire water depth very much like a hurricane in the

atmosphere. The induced upwelling with a constant vis-

cosity Az 5 0.5 m2 s21 is stronger than that with viscosity

Az 5 g2tu/2rf. The Coriolis parameter also affects the

upwelling flux. As discussed earlier, under the assump-

tion of constant viscosity, the response to a hurricane is

stronger at low latitudes than at middle latitudes. How-

ever, because of the merging of the surface and bottom

boundary layers, the overturning streamfunction for

the case with Az 5 g2tu/2rf may appear in the form of

two cells (Figs. 8c,d), similar to the structure shown in

Fig. 7. As a result, the maximum upwelling flux occurs

at a different radius with the different choice of vertical

viscosity.

3. Relationship between oceanic response and
hurricane physical parameters

Through examining the chl-a response to 13 hurri-

canes in 1998–2001, Babin et al. (2004) found that there

is a linear relationship between percent chl-a enhance-

ment and some hurricane physical parameters, such as

mean wind speed, tropical storm force wind radius, and

hurricane-force wind radius. To assess the physical ef-

fects of hurricanes, we will establish some quantitative

relations between the oceanic response and hurricane

physical parameters. The corresponding relations for

these two parameterizations are discussed separately.

a. Az 5 0.5 m2 s21

Recall the upwelling flux (29). At r 5 r0, it is reduced to

c(z, r
0
) 5 2pr

0
G(z). (35)

Because the maximum of G(z) is in the geostrophic

layer and depends on V2
max only, we conclude that, under

the assumption of a constant viscosity, the maximum

upwelling flux induced by a stationary hurricane is pro-

portional to the square of its maximum wind speed and

the radius of the maximum wind speed.

Under the assumption of constant viscosity, the Ekman

depth d is constant. If H . 2d, the geostrophic velocity

(17) is approximately

y
u,geo

’
dtu

rA
z

5
tu

r

ffiffiffiffiffiffiffiffiffi
2

A
z

f

s
5

2tu

rdf
. (36)

The accumulated geostrophic transport can be calcu-

lated by

Q
geo

(r) 5

ðr

0

Hy
u,geo

dr 5
tu,maxH

r

ffiffiffiffiffiffiffiffiffi
2

A
z

f

s ðr

0

F(r) dr, (37)

and the final result is
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Q
geo

(r) 5

tu,maxH

5r

ffiffiffiffiffiffiffiffiffi
2

A
z

f

s
r5

r4
0

, r , r
0

tu,maxH

r

ffiffiffiffiffiffiffiffiffi
2

A
z

f

s
r

0

5
�

r
0

3� 2b
1

r3�2b

(3� 2b)r2�2b
0


 �
, r $ r

0

8>>>><
>>>>:

, (38)

where tu,max is the maximum wind stress.

From Eq. (32), we obtain the accumulated azimuthal

ageostrophic transport

Q
ageo

(r) 5

ðr

0

ð0

�H

y
u,ageo

(z) dz dr 5
t

r,max
b

r f

ðr

0

F(r) dr, (39)

where tr,max
b is the maximum radial bottom stress. Ac-

cording to (34), t
r,max
b ’�tu,max; hence,

Q
geo

(r)

Q
ageo

(r)
5�2H

d
, (40)

which indicates that the geostrophic motion dominates

the horizontal circulation induced by a hurricane.

FIG. 8. The streamfunction (in Sv) in the r–z plane at (left) 188N and (right) 368N for (top) Az 5 0.5 m2 s21 and

(bottom) Az 5 g2tu/2fr.
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For Az 5 0.5 m2 s21, the Ekman depths at 188 and

368N are 149 and 108 m, respectively, so condition H .

2d is satisfied.

b. d 5 g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q

If H . 2d, the geostrophic velocity can be represented as

y
u,geo
9 ’

dtu

rA
z

5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/g2r

p
; (41)

furthermore, the accumulated geostrophic transport

satisfies

Q
geo
9 (r) 5

2H

3g

ffiffiffiffiffiffiffiffiffiffiffiffi
tu,max

r

s
r3

r2
0

, r , r
0

2H

g

ffiffiffiffiffiffiffiffiffiffiffiffi
tu,max

r

s
r

0

3
�

r
0

2� b
1

r2�b

(2� b)r1�b
0


 �
, r $ r

0

8>>>><
>>>>:

. (42)

Note that it is independent of latitude. In this case, the

Ekman depth increases as wind stress is increased; as

a result, condition H . 2d may not always be satisfied.

Figure 9 shows the accumulated geostrophic transport

for a typical case with H 5 1200 m, r0 5 50 km, and Vmax 5

60 m s21. Because the Ekman depth d 5 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q
at

188N is 1040 m, corresponding to the maximum wind

stress, condition H . 2d cannot be satisfied; Eq. (42) is

not suitable for cases with strong wind stress. However,

as seen in Fig. 9b, the discrepancy between the analytical

geostrophic transport obtained by numerically integrat-

ing Q9geo(r) 5
Ð r

0 Hy
u,geo9 dr and Eq. (42) is so small that

Eq. (42) can also be used to approximately estimate the

geostrophic transport for d 5 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q
without satisfying

the condition H . 2d. When r # 2r0, the accumulated

geostrophic transport increases quickly and levels off at r 5

4r0 (Figs. 9a,b). As seen from Eq. (38), Qgeo(r) } 1/
ffiffiffi
f

p
,

so that under the assumption of a constant viscosity the

horizontal current induced by a hurricane at low latitudes

is stronger than at middle latitudes (Fig. 9a). This is con-

sistent with the numerical results by Greatbatch (1984). In

both cases the geostrophic transport is quite large, sug-

gesting that the current induced by a hurricane may play

an important role in stirring up the whole depth of the

ocean.

In Eqs. (38) and (42), the accumulated geostrophic

transports are both a linear function of the ocean depth.

To illustrate their variation quantitatively with the ocean

depth, the accumulated geostrophic transport at r 5 4r0

for r0 5 50 km, Vmax 5 60 m s21 is displayed in Fig. 10.

FIG. 9. The accumulated geostrophic transport vs r for H 5 1200 m, r0 5 50 km, and Vmax 5 60 m s21: (a) Az 5

0.5 m2 s21 and (b) Az 5 g2tu/2fr. In the label, ‘‘numerical integration’’ means that the accumulated geostrophic

transport is calculated by numerical integrating Q9geo(r) 5
Ð r

0 Hy
u,geo9 dr.
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To compare the error of Eq. (42) arising from H . 2d

under the assumption of d 5 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q
, the results ob-

tained by integrating Q9
geo

(r) 5
Ð r

0 Hy
u,geo
9 dr are also il-

lustrated in Fig. 10. As seen from Fig. 10, Eq. (42) can be

utilized to delineate approximately the change of geo-

strophic transport with depth. In a 600-m-deep ocean, the

total horizontal transport induced by a hurricane is about

10, 30, 42 Sv (1 Sv [ 106 m3 s21) for three specified cases,

respectively.

The accumulated geostrophic transport (at r 5 4r0)

and maximum upwelling flux vary with the maximum

wind speed and the radius of maximum wind speed

(Figs. 11, 12). According to Eqs. (35) and (38), under the

assumption of constant viscosity they both change line-

arly with the radius of maximum wind speed and qua-

dratically with the maximum wind speed.

The similar parameter dependence for these two

transports is due to that fact that the bottom Ekman flow is

dominated by geostrophic flow if the upper and bottom

Ekman layers are well separated. Because Qgeo9 (r) }ffiffiffiffiffiffiffiffiffiffiffiffi
tu,max
p

, there is a linear relationship between the accu-

mulated geostrophic transport and maximum wind speed

for the case d 5 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tu/ f 2r

q
. For a typical radius of maxi-

mum wind speed r0 5 50 km and a typical maximum wind

speed Vmax 5 60 m s21, the total geostrophic transports

are 25, 61, and 84 Sv separately (Figs. 11a, 12a), whereas

the maximum upwelling fluxes are 31 and 63 Sv (Figs.

11b, 12b).

4. Numerical results based on an OGCM

The analytical solutions discussed earlier are based on

the classical theory of the Ekman layer; thus, they are

highly idealized. Many important processes omitted in

the analytical solution can be included in numerical

simulations. In this study, we employ a regional version of

MIT OGCM for an inviscid, incompressible fluid gov-

erned by hydrostatic, Boussinesq primitive equations. The

model has a nonlinear implicit free surface and is forced by

FIG. 10. The accumulated geostrophic transport (Sv) at r 5 4r0 vs

H for r0 5 50 km and Vmax 5 60 m s21. Numerical integration

means that the accumulated geostrophic transport is calculated by

numerically integrating Q9geo(r) 5
Ð r

0 Hy
u,geo9 dr.

FIG. 11. (a) The accumulated geostrophic transport at r 5 4r0 and (b) the maximum upwelling flux vs r0 for

H 5 1200 m and Vmax 5 60 m s21.
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surface wind stress only, without thermohaline forcing

[Eq. (22)]. The model ocean is configured as an f-plane

ocean for a stationary hurricane in local Cartesian co-

ordinates, with x axis eastward, y axis northward, and

z axis upward. The coordinate origin is located at the un-

disturbed sea surface. The corresponding velocity com-

ponents are u, y, and w. The model domain is 1000 km 3

1000 km, with horizontal resolution 10 km 3 10 km. The

model ocean is 1200 m deep with vertically uniform res-

olution of 40 m. The no-slip boundary condition is im-

posed on the bottom boundary. The vertical viscosity is

set to 0.5 m2 s21, and the horizontal viscosity is set to

4000 m2 s21. The Coriolis parameter f is set to 0.4506 3

1024 s21, corresponding to 188N. The wind stress profile

is the same as defined by Eqs. (19)–(23) and shown in

Fig. 3, and the hurricane is located at the center of the

model domain.

The model was integrated over 7 days from an initial

state of rest to a quasi steady state. The accumulated

geostrophic transport obtained from the analytical model

and the MIT OGCM is displayed in Fig. 13. For the case

with the maximum wind speed equal to 20 m s21, the

accumulated geostrophic transport obtained from the nu-

merical model is quite close to that obtained from the

analytical model. As the maximum wind speed increases,

however, the discrepancy between the model and the

analytical solution with vertical viscosity set to 0.5 m2 s21

is enlarged. The primary reason is that the 10-km hori-

zontal resolution is not fine enough to resolve the spike-

like stress profile shown in Fig. 3b. In fact, the maximum

wind stress in the numerical model for the case with the

maximum wind speed set to 60 m s21 is approximately

8 N m22, which is slightly smaller than the analytical so-

lution shown in Fig. 3b. The accumulated geostrophic

transport in the MIT OGCM has a quadratic relation with

the maximum wind speed.

Figure 14 shows the flows of a homogenous ocean

model, in which the parameters are the same as discussed

FIG. 12. (a) The accumulated geostrophic transport at r 5 4r0 and (b) maximum upwelling flux vs Vmax for

H 5 1200 m and r0 5 50 km.

FIG. 13. The accumulated geostrophic transport obtained from

the analytical model (marked by circles and diamonds) and the

MIT OGCM (marked by squares). The radius of maximum wind

speed is r0 5 50 km.
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in section 3a. The horizontal velocity u in section y 5

500 km corresponding to the radial velocity in the ana-

lytical solution is plotted in Fig. 10a and vectors (u, 1000 3

w) are superimposed. Similar to Fig. 4, the upper and

bottom Ekman layer are distinct and their thicknesses are

comparable with the analytical solution. Velocity vectors

in Fig. 9a show the circulation in the x–z plane, with up-

welling inside the maximum wind band and downwelling

outside. The horizontal flow and vertical velocity at

depths 80, 600, and 1120 m are plotted in Figs. 9b–d.

Obviously, the horizontal flow is an outward (inward)

spiral in bottom (upper) Ekman layer; however, it appears

as circular motion at the middle depth, which is a strong

indicator of the nearly azimuthal cyclo-geostrophic flow at

this level. The contours of vertical velocity in Figs. 9b–d

confirm the axisymmetric character and the vertical move-

ment in Fig. 9a.

There are indeed some differences between the an-

alytical and numerical solutions. First, the upwelling

extends to the outside of the maximum wind speed ra-

dius. It is clear that the step-function-like discontinuity

in the analytical solution is smoothed out by horizontal

diffusion in the numerical solution. Second, flow in the

bottom Ekman layer displayed in Fig. 14a is weaker than

that obtained from the analytical solution. Therefore, the

volume flux compensating the outward Ekman transport

in the upper ocean is not entirely from the bottom

boundary layer.

Overall, results from the analytical model are quite

similar to those obtained from the numerical model.

Apparently, omitting the centrifugal force terms and

other high-order terms in the analytical model is a good

approximation, and the analytical model can be used as

a tool to understand the more complicated results from

the numerical model. Therefore, if there were stationary

hurricanes, the analytical solutions can provide a frame-

work. No hurricane is truly stationary and no ocean is

completely homogenized; thus, the solutions discussed

FIG. 14. Flow fields of a homogenous ocean model driven by a stationary hurricane: a) u in y 5 500-km section

(grayscale, in m s21) superimposed by vectors (u, 1000 3 w) and (b) w (grayscale, in 1023 m s21) superimposed by

vectors (u, y) at depths of (b) 80, (c) 600, and (d) 1120 m.
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earlier are only an idealization, which can serve as the

theoretical limit for hurricane moving extremely slowly

over an ocean with extremely weak stratification.

5. Conclusions

The analytical solution discussed in this study pro-

vides an idealized picture of the zero-order structure

of the oceanic circulation induced by a stationary hurri-

cane. Most importantly, our study reveals the hurricane-

induced upwelling water associated with outward surface

Ekman transport comes from the bottom Ekman layer

and appears in the form of an upward spiral eddy. In some

sense, the circulation structure induced by a stationary

hurricane is quite similar to that of a hurricane in the

atmosphere. As required by Newton’s third law of mo-

tion, the mass transport in the atmospheric boundary

layer and the oceanic boundary layer should be equal in

magnitude, but with opposite signs.

Despite the crude assumptions made in the analytical

solution, it gives a succinct description to the circulation

induced by a stationary hurricane. The assumption of

a purely geostrophic flow in the middle level gives rise to

constraint (11) in the analytical model. Such an assump-

tion is clearly an idealization, and it implies the existence

of an intense bottom Ekman flow. Nevertheless, our nu-

merical experiments indicate that the analytical solution

is quite close to the numerical solutions that include some

of the ageostrophic processes. In fact, results of the MIT

OGCM confirm the overall structure of the circulation

generated by a stationary hurricane. At the same time, it

is found that the horizontal diffusion, nonlinear terms,

and centrifugal force terms have little effect on the

overall structure of the circulation.

Both the horizontal transport and upwelling flux in-

duced by a hurricane are huge and have a strong link

with the hurricane physical parameters. With a choice of

constant viscosity, they both vary linearly with the radius

of maximum wind speed and quadratically with maximum

wind speed; however, for a variational viscosity associated

linearly with wind stress, the geostrophic transport is lin-

early dependent on the maximum wind stress. Therefore,

it is not strange that some statistic relations between chl-a

enhancement and hurricane physical parameters can be

revealed in Babin et al. (2004).

Finally, we stress again that the analytical solution for

a stationary hurricane discussed in this paper is highly

idealized and provides only a conceptual picture to the

circulation induced by a hurricane. In reality, hurricanes

often move with a typical speed of 5–20 km h21. The

lateral translation of a hurricane brings about many

complicated dynamical processes, including the exciting

of near-inertial oscillations in the ocean, which play

a vitally important role in the hurricane-induced pertur-

bation. The study of related topics is currently under way

and will be reported in a follow-up paper.
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