
Energetics of lateral eddy diffusion/advection: 
Part II. Numerical diffusion/diffusivity and gravitational 
potential energy change due to isopycnal diffusion
HUANG Rui Xin1*

1Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole 02543-1050, 
USA

Received 30 August 2013; accepted 17 December 2013

©The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Abstract
Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad-
vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori-
zontal diffusivity/viscosity due to the incorrect alignment of the axis. Therefore, such models can smear 
sharp fronts and introduce other numerical artifacts. For simulation with relatively low resolution, large 
lateral diffusion was explicitly used in models; therefore, such numerical diffusion may not be a problem. 
However, with the increase of horizontal resolution, the artificial diffusivity/viscosity associated with hori-
zontal advection in the commonly used Eulerian coordinates may become one of the most challenging ob-
stacles for modeling the ocean circulation accurately. Isopycnal eddy diffusion (mixing) has been widely 
used in numerical models. The common wisdom is that mixing along isopycnal is energy free. However, a 
careful examination reveals that this is not the case. In fact, eddy diffusion can be conceptually separated 
into two steps: stirring and subscale diffusion. Due to the thermobaric effect, stirring, or exchanging water 
masses, along isopycnal surface is associated with the change of GPE in the mean state. This is a new type 
of instability, called the thermobaric instability. In addition, due to cabbeling subscale diffusion of water 
parcels always leads to the release of GPE. The release of GPE due to isopycnal stirring and subscale diffusion 
may lead to the thermobaric instability.  
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1 Introduction
For more than 200 years, both the Eulerian and Lagrangian 

coordinates have been used in fluid dynamics extensively. Most 
currently used numerical models are based on the Eulerian co-
ordinate. Most people believe that these two coordinates sys-
tems should be equivalent. As such, results obtained from one 
system can be readily transformed into the other coordinates. 
However, this equivalence had not been proved mathemati-
cally for a long time. The first step was took by Wegner (1987), 
who showed that for one-dimensional flow of gas dynamics, 
the weak solutions (weak solutions contain discontinuity in the 
derivatives of the solutions) obtained from these two coordi-
nate systems is equivalent, i.e., there exists a one-to-one map 
between these two sets of weak solutions. This discovery reaf-
firmed people’s belief. 

However, further studies indicated that this is not the case. 
In fact, Hui and his colleagues showed that for two-dimensional 
and three-dimensional flows, these two systems are not equiva-
lent to each other theoretically, e.g., Hui et al. (1999), Hui and 
Kudriakov (2001), Hui (2007). For example, in mathematical 
terms, gas dynamical equations for two-dimensional and three-
dimensional flows in Eulerian coordinates are strongly hyper-
bolic; on the other hand, the corresponding equations in the 
Lagrangian coordinates are weakly hyperbolic. In particular, the 
Cauchy problem for strongly hyperbolic system is well-posed in 

the sense of Hadamard; however, weakly hyperbolic system is 
not well posed in the sense of Hadamard; it is weakly well-posed 
only in a weaker sense (Hui and Xu, 2012). 

A better understanding of the meaning of such mathemati-
cal theory may take some time for oceanographers and numeri-
cal modelers. However, a simple take home message may be as 
follows. First, simple one-to-one mapping between Eulerian 
coordinate and Lagrangian coordinates may not exist. Second, 
parameterization of models based on these two coordinate sys-
tems can be quite different. In particular, Lagrangian diffusiv-
ity inferred from drifters may not be simply applied for models 
based on Eulerian coordinates. Thus, the high value of Lagrang-
ian diffusivity inferred from drifters and floats may not be ap-
plicable to numerical models based on Eulerian coordinates.

Although the Eulerian coordinates have a great advantage 
for numerical simulation, there are many problems associated 
with lateral advection and diffusion. In particular, models based 
on the Eulerian coordinates have difficulties in dealing with 
high concentration gradient because of numerical dispersion. 
Numerical dispersion in the Eulerian coordinates sometime 
appears in forms similar to physical dispersion; however, such 
dispersion is entirely due to the numerical errors. The existence 
of numerical dispersion can lead to smearing of tracer fronts. 
Although using high-order finite difference schemes can reduce 
the amount the smearing, it can also bring about artificial oscil-
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lations of the solutions (Spivakovskaya et al., 2007; Zhang and 
Wang, 1999). 

Isopycnal analysis has been a commonly used approach and 
the common wisdom is that isopycnal mixing is free of energy. 
This is a statement often encountered in oceanographic lit-
erature; however, such a statement is without solid and careful 
proof. We will go through careful examination of isopycnal eddy 
diffusion (mixing). First of all, eddy diffusion along isopycnal 
surface can be conceptually separated into two stages, stirring 
and subscale diffusion. The second stage, subscale diffusion, is 
always associated with GPE release. We will show that in the first 
stage, isopycnal stirring, GPE of the system can be changed, ei-
ther increased or reduced. The change of GPE during isopycnal 
stirring is closely linked to the gradient of elasticity on isopyc-
nal surface. Due to the horizontal variation of elasticity on iso-
pycnal surface, lateral adiabatic stirring of water parcels always 
leads to change of GPE. In addition, GPE is reduced during the 
second stage, subscale diffusion. Thus, isopycnal eddy diffusion 
is not energy free, and energetics of isopycnal eddy diffusion 
should be carefully analyzed. 

2 Numerical diffusivity/viscosity induced by horizontal ad-
vection in the Eulerian coordinates

2.1 Simple examples of numerical diffusion in Eulerian coor-

dinates
It is well-known that the advection terms in Eulerian models 

can introduce numerical diffusion and other errors. To demon-
strate this point, we first show the simple case with pure dif-
fusion. The model has horizontal grid size of x= y=100 m. At 
time T0=0, the tracer concentration is set to C=1 at a grid point 
at the origin of the coordinates, but there is no tracer at any oth-
er points. The diffusivity is set to k=35 m2/s and the time step 
is t=1 s. After 1 000 time steps, the tracer is spread into a large 
area, with the maximum of C=0.023 6, shown as Fig. 1.

As the next step, we show that advection term in the Eulerian 

coordinates can induce numerical diffusion. It is well known 
that tracer conservation equation in the Lagrangian coordi-
nates does not explicitly include the diffusion associated with 
advection. 

To begin with, we start with a one-dimensional case. As 
shown by the heavy line bars in Fig. 2, after 1 000 time steps, 
the tracer patch moves to 1 km east of the origin. Tracer is all 
confined in a single grid box, so that the concentration is still 
equal to one unit. 

However, we can also simulate the tracer concentration us-
ing the Eulerian coordinates. First, for the case with advection 
only, we can use upwind scheme or central difference scheme. 
After 1 000 time steps, the tracer concentration is shown as blue 
curves in Fig. 2. It is clear that due to numerical errors, tracer 
is spreading along the path. The upwind scheme is more diffu-
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Fig.1. Tracer spreading due to pure diffusion (k=35 m2/s, 
T=1 000 s, Cmax=0.023 6).
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Fig.2. Tracer spreading in a one-dimensional model due to advection and diffusion, (u=1, T=1 000 s) based on the upwind scheme 
(a) and central difference scheme (b). 
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sive than the central difference scheme; however, the later can 
introduce oscillations, as shown in Fig. 2b. Adding the lateral 
diffusion enhances the lateral spreading of tracer; in addition, 
it smoothes the oscillatory behavior of the solution, Fig. 2b. 
For the one-dimensional case discussed here, it is possible to 
further reduce the numerical errors introduced in the Eulerian 
coordinates by using more advanced finite difference schemes, 
e.g., Hui and Xu (2012). 

We now discuss the two-dimensional case. The results ob-
tained by the upwind scheme and central difference scheme, 
with or without diffusion, are shown in Fig. 3.  As in the one-
dimensional case, pure advection can introduce numerical dif-
fusion, left panels of Fig. 3. In this two-dimensional case, there 
are again the oscillations. Nevertheless, the spreading of tracer 
due to advection is clearly shown in this figure. Adding diffusion 
can smooth out the oscillations.  
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Fig.3. Tracer spreading (two-dimensional model) due to advection and diffusion. a and c for advection only; b and d for advection 
and diffusion; a and b for upwind scheme; c and d for central difference scheme. 

2.2 Artificial diffusivity due to horizontal advection in Eule-

rian coordinates

2.2.1 The special case of 45° off the horizontal axis 
The numerical error associated with horizontal advection 

terms in the Eulerian models can be demonstrated with the 
following simple case. Assume that at a given grid point in the 
two-dimensional plane, water flows with velocity U, as shown 
in Fig. 4a. To illustrate the numerical artifact associated with the 
Eulerian coordinates, we choose two sets of coordinates and 
compare the difference in the lateral advection terms simulated 
in these two coordinates. In the Eulerian coordinates labeled by 
(X,Y), the local X-axis is aligned with the flow velocity U. In the 

Eulerian coordinates labeled by the lower case characters (x,y), 
the x-axis is 45° off the U vector. This case represents the worst 
situation for the artificial diffusivity induced by horizontal ad-
vection in the Eulerian coordinates. Let us examine salinity bal-
ance at grid point 5.

For comparison, our analysis below will be based on the 
commonly used central finite difference scheme, which will 
be used for both coordinates. Ideally, the contribution due to 
lateral advection should be the same in these two sets of coor-
dinates, i.e., at each time step the contribution associated with 
lateral advection should be independent of the choice of coor-
dinates, such as the orientation of the axis. However, as will be 
shown shortly, this is not the case.
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We will be focused on a two-dimensional flow with no source 
or sink, i.e., the velocity field is divergence free. From the con-
struction of these two coordinate systems, it is clear the velocity 
components and grid size satisfy the following constraints

2 2U u v ; 2 2X Y x y .          (1)

Let us consider the following two-dimensional salinity balance 
equation

2
H

S uS K S
t

.                           (2)

Salinity change due to lateral advection in grid point 5 can be 
written in finite difference form in coordinate x-y as follows. Sa-
linity flux associated with u-velocity component flows from grid 
point 4 to grid points 5 and 6; similarly, salinity flux associated 
with v-velocity component flows from grid point 2 to grid points 
5 and 8. Using central difference scheme, we have

4 5 5 6

2 5 5 8

2 4 6 8

0.5 ( ) /

0.5 ( ) /

0.5 / .

uS u S S S S y

v S S S S y

u S S S S y              (3)

On the other hand, the corresponding advection term cal-
culated in the X-Y coordinate has no contribution from the 
lateral grid points 3 and 7. With the only contribution from the 
upstream and downstream grids, the lateral advection term is  

1 5 5 9

1 9

1 9

0.5 ( ) /

0.5 /

0.5 / .

US U S S S S X

U S S Y

u S S x             (4)

Note that in the derivation above, we have used the Eq. (1).
It is clear that salinity change due to horizontal advection in 

these two coordinates is different. From the physical point of 
view, contribution of the horizontal advection to the salinity at a 
given grid point should have a single value, independent of the 
choice of the coordinates. In the present cases, we have two dif-
ferent values. Thus, there are only two possible cases: (1) both 
of them are wrong; (2) one of them is correct or a much better 
choice, and the other one is wrong or a bad choice. 

In this study, we will take the expression in Eq. (4) as the 

“truth”, and the difference between the advection terms cal-
culated in x-y coordinates and the X-Y coordinates is defined 
as the artificial diffusivity due to advection in Eulerian coordi-
nates. It is clear that numerical artifact defined in this way may 
depend on the choice of finite difference scheme. However, we 
believe that although the choice of the finite difference scheme 
can affect the results to certain degree, the artificial eddy dif-
fusivity associated with the Eulerian coordinates is intrinsic to 
this coordinates system.

We further quantify this error in terms of an equivalent La-
placian diffusivity 

HK . Note that in the x-y coordinates, salinity 
change due to Laplacian diffusion can be written in terms of 
second-order finite difference

2 2
H H 2 4 6 8 54 /K S K S S S S S x .                 (5)

Hence, in the x-y coordinates the artificial diffusivity associ-
ated with the advection terms can be quantified in terms of an 
equivalent Laplacian eddy diffusivity HK defined through the 
following formula  

2 4 6 8 1 9

H
2 4 6 8 52

2 2

4 .

U S S S S S S
x

K S S S S S
x                     (6)

As a result, the equivalent numerical diffusivity due to horizon-
tal advection in the Eulerian coordinates is defined by

2 4 6 8 1 9
H

2 4 6 8 5

, ,
2 2 4
S S S S S SK F R F U x R
S S S S S

.       (7)

Note that in this way, factor F is a parameter of the model reso-
lution and the local velocity, but the factor R depends on the 
tracer salinity only, with nothing to do with the flow velocity and 
grid size.

Since Eq. (7) is homogeneous in its variables, we introduce a 
set of non-dimensional and normalized variables

'
i iS S S S , i =1,2,…,9,                            (8)

where S and '
iS are the local mean salinity and the new non-
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Fig.4. A standard grid used in an Eulerian coordinates.
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dimensional salinity variable. Substituting Eq. (8) into Eq. (7) 
and dropping the primes, we have a relation based on normal-
ized variables

2 4 6 8 1 9
2 4 6 8 5, 4

2 2
S S S S S SR D S S S S S

D
.       (9)

Because this formula is a function of the normalized salin-
ity with the local mean salinity removed, we can assume that 
the normalized salinity in each grid point is completely random 
and calculate the corresponding factor R. Since a very small fac-
tor D can lead to an extremely large factor R and thus an ex-
tremely large equivalent diffusivity, we will set a lower bound for 
the absolute value of D as follows

limit limit

limit limit

if 0, then ;
if 0, then .
D D D D
D D D D                    

  (10)

Choosing value of Dlimit for 10−5 to 10−4 gives solutions in similar 
range.

Factor R is calculated using a Monte-Carlo method as fol-
lows. Each time we can use a standard subroutine in Matlab to 
generate a series of random number for salinity (Si , i=1,2,…,9). 
R can be calculated from Eq. (9). 101 sets of experiments were 
carried out and each set includes total number Imt=5 000 000 
series of salinity. A typical output from these runs is shown in 
Fig. 5. Since the equivalent diffusivity can be positive or nega-
tive, we separate them into the corresponding positive bin and 
negative bin; the corresponding mean of the positive/negative 
values are calculated accordingly.  

From this example, the amplitude of the mean equivalent 
factor is approximately 1.8. Although, such mean can vary due 
to the random nature of this factor and for different choice of 
Dlimit, we will use 1.8 as a typical value for our discussion be-
low. The probability of generating equivalent positive or nega-
tive diffusivity is the same, i.e., 50%, as indicated by the heavy 
dashed line in Fig. 5. As will be discussed below, a negative value 
of R indicates anti-diffusion, or demixing, which is a non-phys-
ical phenomenon intrinsic to the lateral advection term simu-
lated in the traditional Eulerian coordinates.

2.2.2 The general case of arbitrary velocity angle
In the derivation above, we assume the worst case, i.e. when 

the velocity is =45º off the x-axis. For the general case, the ve-
locity vector angle is smaller than 45°, as shown in Fig. 4b by 
the blue vectors. The advection term in the x-y coordinates is 

4 5 5 6

2 5 5 8

4 6 2 8

0.5 ( ) /

0.5 ( ) /

0.5 / 0.5 /
n n

n n

uS u S S S S x

v S S S S x

u S S x v S S y .         (3 )

From Fig. 4b, we have the following relations:

2 8 2 8

4 6 2 8

cos , sin ;
tan , tan ;

0.5 cos sin / .
n n

u U v U
y y S S S S

uS U S S S S x
       (3 )

The corresponding advection term calculated in the X-Y coor-
dinate is 

1 9

4 1 4 6 9 6

0.5 /

0.5 tan tan /

n nUS U S S Y

U S S S S S S Y .    (3 )

where Y= x/cos is the corresponding grid size in the direction 
following the flow. 

4 6 1 6 4 90.5 cos sin /US U S S S S S S x .   (5 )

Here again, we define the difference between the advection 
term calculated in x-y coordinates and the X-Y coordinates as 
the artificial diffusivity introduced through the lateral advection 
terms in Eulerian coordinates. We further quantify this error in 
terms of an equivalent Laplacian diffusivity HK

2 4 6 8 1 9

H
2 4 6 8 52

sin
2

4

U S S S S S S
x

K S S S S S
x .                (6 )

Therefore, the corresponding formula is

2 4 6 8 1 9
H

2 4 6 8 5

, , sin
2 4
S S S S S SK F R F U x R
S S S S S

.     (7 )

The first factor in R can be calculated through the Monte-Carlo 
experiment as discussed above. Using the results shown in Fig. 5,  
the corresponding factor of R in Eq. (7 ) can be calculated, and 
the result is shown in Fig. 6.

Using the 50-year mean velocity data from SODA 2.1.6 
(1958–2008; Carton and Giese, 2008), the root-mean-square 
horizontal velocity in the model ocean is on the order of 0.1 m/s 
in the upper ocean, and gradually decline to 0.01 m/s in the 

10 20 30 40 50 60 70 80 90 100
−2.5

−2.0

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

probability of positive equivalent diffusion

Serial number of experiment
Eq

ui
va

le
nt

 d
iff

us
iv

ity
 fa

ct
or

 R

Imt=5 000 000, Dlimit=10−5

Fig.5. Equivalent diffusivity factor R inferred from a set 
of Monte-Carlo experiments.



HUANG Rui Xin. Acta Oceanol. Sin., 2014, Vol. 33, No. 3, P. 19–3924

deep ocean. The corresponding mean velocity angle is in the 
range of 30°–40°. Accordingly, factor R is in the range of 1.2–1.4. 
Thus, as a slightly conservative estimate, we will assume

H1,R and K F R F U x�
 .                         (7 )

Therefore, the artificial diffusivity induced by through the later-
al advection term in the Eulerian coordinates can be estimated 
using the simple Eq. (7 ).

2.2.3 The equivalent diffusivity can be negative
As shown in Fig. 5, the equivalent diffusivity due to horizon-

tal advection can be negative. As an example, we show such a 
case in Fig. 8.

Assume that due to the time evolution and other dynami-

cal processes the non-dimensional normalized salinity distri-
bution has the values shown in Fig. 8. We also assume that the 
velocity (u,v) is of one unit, so that the velocity is 45° rotated 
from the x-axis. The horizontal advection along the x and y axis 
all makes positive contribution

4 6 0.5S S ; 2 8 0.5S S .

Therefore, horizontal advection in the x-y coordinates tends to 
increase salinity in grid Point 5.

On the other hand, however, contribution of horizontal ad-
vection in the X-Y is negative

1 9 0.05S S ,

i.e., it tends to reduce salinity in grid point 5. Thus, horizontal 
advection term in x-y coordinates has a sign opposite to that in 
the X-Y coordinates, and it overpowers the advection term in 
X-Y coordinates. On the other hand, the effect of pure diffusion 
in this case is negative

2 4 6 8 54 1.2S S S S S ,

i.e., the Laplacian diffusion tends to reduce salinity in grid Point 
5. Thus, Laplacian diffusion in x-y coordinates has the same 
sign as the horizontal advection in the X-Y coordinates. On 
the other hand, horizontal advection terms in x-y coordinates 
make a contribution opposite to that of horizontal diffusion. 
This phenomenon can be called “demixing”. Such demixing 
may be an artifact in the numerical model, and the reason of 
such problem may be linked to the incorrect orientation of the 
local coordinates and the central difference scheme used in the 
calculation. 

As shown above, factor R is independent of the grid size and 
the amplitude of tracer anomaly. In fact, for the general case an 
angle equal or larger than 25°, the corresponding equivalent dif-
fusion coefficient R is approximately 1. Thus, the factor calcu-
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lated above can be applied to cases with resolution on the order 
of 100 km and down to horizontal grid size of 1 mm which rep-
resents the size of grid controlled by molecule diffusion.

2.3 Comparing the equivalent diffusivity with observations
According to Eq. (7 ), artificial diffusivity is simply a product 

of speed and grid size. Assuming the mean velocity angle is 25°, 
the corresponding diffusivity as a function of the horizontal grid 
size is shown as the blue lines in Fig. 9. The black line represents 
the typical value of lateral diffusivity used in oceanic circulation 
models. For comparison, we also include the horizontal diffu-
sivity observed in the ocean and plotted as the red lines in Fig. 

9, taken from Obuko (1971) and Ledwell et al. (1998). 
Note that lateral diffusion in the ocean depends on the hori-

zontal scale of the phenomena. For horizontal scale on the or-
der to 1 to 100 km, tracer can appear in forms of streakiness. 
Strong eddies tend to separate tracers into several patches 
which move in the ocean in forms of streak. The horizontal 
scale of streaks is on the order of eddy scale, i.e. on the order 
to 100 km. As Ledwell et al. (1998) pointed, for horizontal scale 
of 30–300 km the equivalent lateral diffusivity is approximately 
1 000 m2/s. On the other hand, each streak of tracer has a typi-
cal width on the order of 10 km. Tracer in each patch spreading 
with a much smaller diffusivity. Ledwell et al. (1998) put the es-
timate for horizontal diffusion on horizontal scale of 1–10 km at 
the value of 2 m2/s.

In a recent study 1), tracer was released upstream of the 
Drake Passage as part of the diapycnal and isopycnal mixing 
experiment in the Southern Ocean (DIMES). As a major effort, 
tracer data collected through the field experiments was com-
pared with numerical simulation of an oceanic general circula-
tion model. The model is based on the MIT OGCM, in which 
horizontal vorticity is advected with a forth-order accurate 
spatial discretization using an enstrophy conserving and vec-
tor invariant formulation. Horizontal viscosity is biharmonic, 
which value scales according to local grid spacing and stress-
es. However, there is no explicit lateral diffusion of tracer. The 
meridional eddy diffusivity diagnosed from the model at 1 500 
m depth is 710 m2/s; on the upper kilometer, it is reduced to 
300 m2/s. Tulloch et al.1) also claimed that the eddy diffusivity 
diagnosed from the numerical model agrees with the Lagrang-
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Fig.8. A case with negative equivalent diffusivity.
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and artificial diffusion (blue lines) induced by advection in Euler coordinates. The red diamonds indicate the equivalent diffusivity 
diagnosed from a (1/20)° MIT model, with zero explicit lateral tracer diffusion.

1) Tulloch R, Ferrari R, Jahn O, et al. 2013. Direct estimate of lateral eddy diffusivity upstream of Drake Passage, manuscript
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ian diffusivity inferred from the dispersion of approximately 50 
acoustically tracked isopycnal floats, deployed on the same iso-
pycnal surface as the tracer. 

In general, diffusivity inferred from Lagrangian drifter and 
floats is much larger than that inferred from old tracer release 
experiments by Obuko (1971). For example, according to the 
study by Lumpkin et al. (2002), in the Gulf Stream the Lagrang-
ian eddy length scale in the surface is in the range of 40–70 km. 
In the deep layer (averaged over 700  to 2 150 m), it is reduced to 
5–20 km, much smaller than at the surface (Fig. 10).

The corresponding diffusivity in the Lagrangian coordinates 
is estimated at values much higher than that from the early trac-
er release experiments cited above, Fig. 11. For example, in the 
surface layer, the diffusivity is within the range of 1×103–20×103 
m2/s; in the deep layer (around 1 500 m), it is 1 000 m2/s.

Similarly, Qian et al. (2013) analyzed the data collected in 
South China Sea, and their estimate is in the same range as that 
of Lumpkin et al. (2002).

At the early stage, with very limited computer power hori-
zontal resolution for basin circulation or global circulation was 
on the order to 4°–5°. As an example, Bryan (1987) used 4° reso-
lution in a sector model, and the typical value of horizontal dif-
fusivity was set to 107 m2/s. Such a large diffusivity was used in 
order to stabilize the numerical simulation.

As the computer power increased, fine resolution has be-
come accessible. For example, most climate-related simula-
tions now are running on horizontal resolution on the order of 
1°, or approximately 100 km, with typical horizontal diffusivity 
set to 1 000 m2/s, as shown in Fig. 9. 

As the further increase of computer power, many high reso-
lution models are now running with the horizontal diffusivity 
set to zero or a very small value, such as in the (1/6)° simulation 
of MIT ECCO2 and the more recent numerical experiments re-

ported by Tulloch et al. (2013). As shown in Fig. 9, for any given 
horizontal resolution, in-situ observations indicate that hori-
zontal eddy diffusivity remains finite, not zero. Thus, a good nu-
merical model should accurately simulate the lateral diffusion 
with such diffusivity. Putting the diffusivity zero in model im-
plies that model is doing something unrealistic and we should 
try to avoid such cases.

On the other hand, however, setting the horizontal diffusiv-
ity to zero does not mean there is no horizontal diffusion in the 
model. In contrary, due to the nature of Eulerian coordinates, 
there is an artificial diffusion associated with the advection 
terms. According to Eq. (7 ), for horizontal resolution of 10 km 
and very weak flow, on the order of 0.01 m/s, the artificial dif-
fusivity is in the range of 100 m2/s. If the velocity is fast, in the 
range of 0.1 m/s, the corresponding artificial diffusivity is ap-
proximately 1 000 m2/s, which is much larger than the value of 
10m2/s inferred from observations.  Similarly, if the model reso-
lution is reduced to 1 km, observations indicate that the diffu-
sivity is in the range of 1 m2/s, but the artificial diffusivity is in 
the range of 10–100 m2/s.

It is interesting to notice that the meridional eddy diffusiv-
ity diagnosed from the (1/20) ° MIT model is fairly close to the 
prediction of the numerical diffusivity in the Eulerian models, 
assuming the mean velocity is about 0.1m/s. Although many 
technical details of the MIT model are quite different from the 
simple central difference scheme used in our formulation, the 
corresponding eddy diffusivity does not seem much different 
from the expectation discussed above.

Note that even at the resolution of 1mm, the corresponding 
artificial diffusivity can be as large as 10−3 m2/s, which is 1 000 
times larger than the molecular diffusivity. Thus, even for model 
run with such high-resolution, the output of the model may still 
be contaminated with the artificial diffusion. 
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2.4 Artificial viscosity due to horizontal advection in Eulerian 

coordinates
Our discussion above is focused on the artificial diffusion for 

tracers, such as temperature and salinity. The basic idea also ap-
plies to the momentum equations. Before we start the analysis, 
it is worthwhile to emphasize that momentum dissipation and 
tracer diffusion may be governed by quite different physics. In 
most cases, momentum dissipation is linked to wave motions 
in the ocean, which can carry momentum over a large distance. 
On the other hand, tracer diffusion is linked to mass exchange 
due to turbulence motions, which can carry tracers over the 
length scale of eddies only. 

Let us consider the following x-component momentum 
equation for a two-dimensional flow

2
m,h

u uu A u
t

.                                 (11)

Since we are concentrated on the horizontal aspect of the prob-
lem, other terms are omitted in the equation above. In this for-
mula, Am,h is the horizontal viscosity specified apriori. Note that 
in many models, other forms for this term can be used. How-
ever, we will use this form for simplicity.

Equation (11) looks quite similar to Eq. (2), with a minor dif-
ference. In fact, in most cases velocity at the vicinity of a grid 
point can be separated into two components, the mean velocity 
of the large scale flow and the local deviation from the mean: 
u=U+u', where U=U( , ), is a slowly varying function of large-
scale coordinates ( , ). For a local grid, we treat this slowly 
varying function as a constant, U( , )=constant. For simplic-
ity, we will drop the prime in the following analysis. In general, 
the local perturbations are much smaller than the large scale 
mean, i.e., |u'| |U|. Through linearization, this equation can be 
reduced to the following form

2
m,h2u Uu A u

t
.                              (12)

Therefore, the u-momentum equation has almost exact form as 
the tracer equation, except the equivalent mean velocity should 
be doubled. From Eq. (12), one can derive the same conclusion 
for the artificial dissipation as before, plus an additional factor 
of 2. Note that, such artificial viscosity can be negative, i.e. it is 
equivalent to a negative viscosity. However, such a negative vis-
cosity may be quite different from the equivalent negative vis-
cosity associated with the backward cascade observed in quasi 
two-dimensional turbulence. 

Accordingly, the blue lines in Fig. 9 also apply to the artifi-
cial momentum viscosity due to the horizontal advection in 
Eulerian coordinates, plus an additional factor of 2. There is, 
unfortunately, no reliable estimate of lateral momentum rate 
from observations; thus, a complete comparison in parallel is 
not possible at this time. However, it is to emphasize that the 
artificial momentum viscosity in Eulerian models can be quite 
large, and with either positive or negative signs. It is thus specu-
lated that eddies obtained through the so-called eddy-resolving 
model based on the Eulerian coordinates may be contaminated 
by such random artificial dissipation at the length scale deter-
mined by the grid size.   

2.5 Remark
As numerical modeler, we are facing a grand challenge.  

Since 1990 the most important progresses in numerical simu-
lation are as follows. First, it was realized the large horizontal 
diffusivity may introduced unwanted diffusion in the diapycnal 
direction; thus, rotating of mix tensor has been widely used in 
basin-scale simulation, and the so-called neutral surface (Mc-
Dougall, 1987a) has been introduced. Second, for model run-
ning with relatively low resolution on the order of 1°, the GM90 
scheme (Gent and McWilliams, 1990) has been widely used for 
eddy parameterization. However, for the high resolution simu-
lations the horizontal diffusivity is set to zero, so that these tra-
ditional techniques become outdated, and we are facing the 
challenge what to do next. The most important challenges now 
facing us are as follows.

Artificial tracer diffusion and momentum dissipation exist 
in the commonly used Eulerian models. Although using dif-
ferent finite difference schemes may reduce such errors, they 
are intrinsic to the Eulerian models. Therefore, it is desirable 
to develop new models in which the unwanted artificial dif-
fusion/dissipation associated with the lateral advection in the 
traditional Eulerian coordinates can be substantially reduced 
or even completely avoided. The newly developed Hui trans-
formation (Hui and Xu, 2012) may be one of the best ways to 
establish the next generation of ocean models.

Although most people believe that Eulerian and Lagrang-
ian coordinates are equivalent, recent advance in mathemat-
ics showed that they are not equivalent. Thus, we face a grand 
challenge of revealing the difference between these two systems 
and we may have to start from zero and re-examine whether the 
conversion between these two systems used in previous ocean-
ographic studies are valid or not. 

We need to explore the nature of lateral eddy diffusion in the 
ocean models. It is now widely accepted that mechanical energy 
is one of the critical constraints for sub-grid scale parameteriza-
tion. Recently, many studies explored the parameterization of 
vertical eddy diffusion based on external mechanical energy as 
integral constraint. One of our goal in this study is to explore us-
ing the external energy as an integral constraint for lateral eddy 
diffusion and lateral advection. In this section, we postulate 
to quantify the numerical errors associated with the horizon-
tal advection terms in the Eulerian coordinates, we will further 
examine this problem in this study. In particular, we will quan-
tify the GPE source/sink associated with lateral diffusion and 
advection in three commonly used vertical coordinate systems.

3 Gravitational potential energy change due to isopycnal dif-
fusion
Although isopycnal mixing or mixing tensor rotation has 

been widely used in numerical models, some aspects of this 
problem have not been examined carefully. In most cases, the 
reason of using isopycnal mixing has been claimed as energy 
free. This is not an accurate statement. In this section, we will 
go through lateral diffusion along isopycnal surface carefully; in 
particular, we will examine the potential change of gravitational 
potential energy associated with isopycnal diffusion.

This section is organized as follows. In Section 3.1 we argue 
that the ocean is a continuous media; thus, one cannot talk 
about the consequence of moving a single water parcel alone; 
instead, it is more meaningful to discuss the consequence of 
exchanging water parcels. Due to the thermobaricity, lateral 
exchange of water parcels can lead to release of GPE, and this 
is called the thermobaric instability, which will be discussed 
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in Section 3.2. Stirring or exchange of water parcels can lead 
to change in the density of water parcels, and the associated 
vertical adjustment of the water column. The consequence of 
isopycnal stirring is examined in Section 3.3. As a result, the 
GPE of the system can be changed due to isopycnal stirring, as 
explained in Section 3.4. The GPE change due to subscale tur-
bulent diffusion is examined in Section 3.5. Although isopyc-
nal mixing has been discussed in many previous studies, some 
aspects of this problem have not been examined carefully. In 
Section 3.6, we will go through the energetics of stirring along 
arbitrary directions and show that stirring within a well-defined 
wedge is optimal in terms of GPE source/sink. The GPE release 
during isopycnal stirring can be connected with the elasticity, 
and this provides a close link between energetics of isopycnal 
stirring and water properties, as discussed in Section 3.7. Final-
ly, this section is concluded in Section 3.8.

3.1 One cannot move a single parcel alone  
Isopycnal eddy diffusion has been accepted as a classical 

concept. As our notion of isopycnal diffusion evolves, in some 
studies isopycnal diffusion is replaced by diffusion along Neu-
tral Surface (NS). The NS has been defined as following: “Neutral 
surfaces are defined so that small isentropic and adiabatic dis-
placements of a fluid parcel in a neutral surface do not produce 
a buoyancy restoring force on the parcel” (McDougall, 1987a); 
“A neutral trajectory is a three-dimensional path in the ocean, 
and is defined such that no buoyancy forces act on a water par-
cel when it is moved a small distance along this path” (Eden and 
Willebrand, 1999).

The exact meaning of NS was reexamined recently by  
Huang 2). A new terminology, the adiabatic density surface(ADS, 
denoted as a hereafter), is introduced. This surface was previ-
ously discussed by McDougal (1987b), and it is defined as the 
depth at which the given water parcel can arrive through adia-
batic movements, without changing its salinity and entropy. 

The ADS associated with a water parcel at certain depth of a 
fixed station can be found as follows. Assume that a given water 
parcel moves adiabatically, without changing its potential tem-
perature 0 

and salinity S0. At time t, and at anywhere in the 
world oceans, its in-situ density is a function of the in-situ pres-

sure, = ( 0,S0,p,t). On the other hand, taking a water column 
at any station ( , ) in the world oceans, the in-situ density is a 
function of the in-situ pressure = [ ( , ,p,t), S( , ,p,t)], where 

( , ,p,t), S( , ,p,t) are given functions at this station and need 
not equal to 0, S0. For large-scale or meso-scale problems, the 
in-situ density monotonically increases with pressure. These 
two density functions constitute a nonlinear equation for a 
single unknown p

0 0, , , , , , , , , , .S p p t S p t p              (13)

In general, there is a solution of this equation. Note that Eq. 
(13) may have multiple solutions, i.e., ADS can have multiple 
sheets/branches. Connecting these depths (pressures) in the 
world oceans gives the ADS. If this equation has no solution at a 
station, the ADS either outcrops or grounds.

Thus, for a water parcel taken at a given station and pressure 
level, the corresponding ADS is well defined through simple cal-
culations. This family of surfaces is the only neutrally buoyant 
surface in the world oceans, and other surfaces different from 
this family of surface are not truly neutrally buoyant.

However, talking about the consequence of moving a single 
water parcel in the ocean may be physically incomplete. The 
ocean is a continuous media, so that one cannot talk about the 
consequence of moving a single parcel alone. Assume a water 
parcel A sitting at p=500 (104 Pa) leaves its original location and 
moves to a new location at p=1 000 (104 Pa) on a potential den-
sity surface (PDS) (Fig. 12a). As a result, Parcel B originally at 
this location is repelled. In addition, there is an empty space left 
behind at p=500 (104 Pa), and other water parcels must come 
to fill up this space (Fig. 12b). A simple choice is to let Parcel 
B fill up this empty place (Fig. 12c), i.e. a position switch be-
tween these two parcels. Other choices must involve position 
exchange of multiple parcels. Thus, it is meaningless to talk 
about GPE change due to movement of a single parcel alone; 
instead, we must examine the total GPE change in the system 
due to movements of all relevant parcels.

The position exchange between Parcels A and B discussed 
here is of finite distance. If A and B are located on a NS or other 

??

p=1 000 (104 Pa) p=1 000 (104 Pa) p=1 000 (104 Pa)
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p=500 (104 Pa) p=500 (104 Pa) p=500 (104 Pa)
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a. Two parcels before exchange b. Parcel positions after moving A c. Density surface adjusted

A

B

Fig.12. A sketch illustrating the consequence of moving a water parcel. The short solid curve in panel c indicates the possible dis-
tortion of the surface due to exchanging two water parcels on a PDS. 

2) Huang R X. 2014. Adiabatic density surface, neutral density surface, potential density surface and mixing path. Manuscript submitted to Journal 
of Tropical Oceanography
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types of density surface, one can also realize such an exchange 
through two series of infinitesimal position exchange as follows. 
First, we conceptually divide the water masses between parcels 
A and B into a series of parcels

 
{Ci}, i=1,2,3,...,N. Let Parcel A 

switch its position with {Ci}, i=1,2,3,...,N on its left-hand side un-
til it reaches the infinitesimal vicinity on the right-hand side of 
B. Second, let Parcel B switch its position with {Ci}, i=N,...,3,2,1. 
At the end of these movements, A and B exchange their position 
without affecting any other parts of the system. If we assume 
that each position switch is infinitesimal, adiabatic and isentro-
pic, the position exchanging of A and B also satisfies the basic 
assumption of adiabatic exchanges along a NS.  

3.2 Thermobaric instability
We begin with examining an instability associated with 

thermohaline perturbations on PDSs. A typical case is the ex-
change of cold/fresh water from high latitudes and warm/salty 
water from mid-latitudes, depicted by the arrows in Fig. 13. The 
cold/fresh water from high latitudes is more compressible than 
the warm/salty water from middle latitudes. As will be shown 
shortly, this difference in elasticity can give rise to GPE release 
during isopycnal stirring of these two types of water. As a result, 
the quasi-lateral mesoscale intrusions between adjacent water 
masses on isopycnal surface can grow with energy supported by 
GPE released from the mean state through such exchanges, and 
this type of instability is called thermobaric instability.

Note that the instability discussed here is different from the 
thermohaline intrusion instability in connection with double 
diffusion. As discussed in many previous studies (Ruddick and 
Kerr, 2003; Ruddick and Richards, 2003), salt fingering and ther-
mohaline intrusions appear on a vertical plane, such as (x, z) or 
(y, z). Thus, these perturbations are examined in terms of fin-
gering or layering in the vertical plane. Most importantly, the 
major mechanism driving such intrusions is directly linked to 
the differential diffusivity of temperature and salinity. Mean-
while, our discussion here is aimed at the isopycnal exchange 
of water parcels, and no difference in diffusivity of temperature 
and salt is involved in our analysis. Thus, although these two 
types of instability may be linked through some dynamical and 
thermodynamic processes, they are driven by quite different 
mechanisms and should have quite different characters.

3.3 Consequence of isopycnal stirring 
In this section, we will show that isopycnal stirring is associ-

ated with GPE change of the system. The issue that isopycnal 
stirring is not energy free has been discussed in some of the 
early studies, such as McDougall (1987c) and Nycander (2011). 
The reader can find some of the relevant references in these two 
papers. However, we will examine this topic to a great details in 
this study.

We begin with two water parcels on the same PDS and 
exchange their right halves. Water Parcel 1 sits on pressure 
p1=103 (104 Pa), so its in-situ density is equal to its potential den-
sity, i.e. 1,1= 1,0= 1,0. Water Parcel 2 also sits on the same PDS, 
so that 2,0= 1,0; however, it is on a slightly smaller pressure level 
p2<103 (104 Pa), so its in-situ density satisfies 2,0< 1,0 (Fig. 14c). 

When the right half of Parcel 2 moves to the position of the 
right half of Parcel 1, its new in-situ density is exactly equal to 

1,0; thus, GPE of water Column 1R remains unchanged. Due to 
the thermobaric effect, however, when the right half of Parcel 1 
moves to the position of the right half of Parcel 2, its new in-situ 
density is different from that of the original water parcel. If the 
newly arrived water parcel has a density lower than the origi-
nal in-situ density ( 2= 2,1− 2,0<0), the whole water column is 
pushed upward, and the sea surface is slightly higher (Fig. 14d). 
As a result, GPE of water Column 2R is increased. The slightly 
lower density in the right half of Parcel B induces a slightly up-
ward distortion of the potential density, as indicated by the red 
curve in Fig. 12c.  Therefore, although PDS consists of the same 
water parcels, the shape of the surface may change due to wa-
ter parcel exchange. In addition, the cabbeling effect through 
subscale turbulent diffusion will increase the distortion of the 
surface further.

On the other hand, if the newly arrived water parcel has a 
density higher than the original in-situ density, the whole water 
column above should move downward, as shown in the right 
part of Fig. 14b; thus, GPE of water Column 2R is reduced, so 
that such water mass exchange is self-energized. Note that such 
self-energizing exchange of water mass is only in the sense of 
local energetics. In the global sense, the oceanic general circula-
tion itself is incapable of generating mechanical energy, so that 
the local release of mechanical energy must be sustained by 
external mechanical energy source of global scale circulation.

3.4 GPE can change due to isopycnal stirring 
All calculations in this section are based on the WOA01 data 

converted to the pressure coordinates (Conkright et al., 2002) 
described in Part I (Huang, 2014). As an example for isopycnal 
stirring, we examine water properties on 0.5=29.3 kg/m3 sur-
face discussed in Part I (Huang, 2014). In particular, we plot the 
corresponding water properties along the 129.5°W meridional 
section in the North Pacific (Fig. 15). Along this section, both 
potential temperature and salinity decline with increasing lati-
tude (Figs 15a and b); the bow-shaped subtropical gyre is clearly 
shown in the central part of Fig. 15c. In the northern part of this 
section, there is a clear sign of the dome-shaped subpolar gyre, 
indicated by the decline of depth (pressure of this potential 
density surface) with latitude. The most important feature is 
that elasticity increases with latitude, as both temperature and 
salinity decline (Fig. 15d).

sloping

cold/fresh water

warm/salty water

a b
isopycnal surface

sloping
isopycnal surface

Fig.13. A sketch of thermohaline intrusions through stirring on an isopycnal surface. a. Before stirring and b. after stirring.
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We now take two stations along this section, and the corre-
sponding water properties are listed in Table 1. Elasticity at Sta-
tion A is smaller than at Station B. Since at Station B the depth 
of PDS 0.5 is very close to 500 (104 Pa), in-situ density is nearly 
equal to potential density, i.e. t(B)= 0.5(B)=29.3 kg/m3.

By definition, when water Parcel A moves to Station B, its 
in-situ density t(A B) should equal the in-situ density at B,

 

t(A B)= t(B)= 0.5(B)=29.3 kg/m3. After exchanging their posi-
tions, the corresponding changes of in-situ density for Parcels 
A and B are

,A AA B At t t E p ,                 (14a)

,B BB A Bt t t E p .                  (14b)
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Fig.14. A sketch illustrating the consequence of exchanging and mixing of two water parcels lying on the same PDS 1. Indexes 1L, 
1R, 2L, 2R denote the left and right halves of the water Columns 1 and 2 respectively. 
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The density difference is

5 3
B AB A A 4.3 10 (kg/m ) 0t t E E p .    (15)

Therefore, when Parcel B arrives at Station A, its in-situ den-
sity is slightly higher than the original in-situ density of Parcel 
A. As a result, the whole water column above 512 (104 Pa) in 
Station A moves down and GPE is released. In addition, due to 
cabbeling more GPE is released after the incoming water mass 
is mixed with the local water mass. This release of GPE is an en-
ergy source sustaining the growth of isopycnal thermohaline 
intrusions.

The instability of quasi-horizontal thermohaline perturba-
tions can be illustrated further by examining the GPE release 
associated with the meridional water mass exchange on this 
PDS. From Eq. (3), density change at Point C due to exchange 
between Points B and C along the PDS 0.5=29.3 kg/m3 is

B C B C B CE E p .                            (16)

Change in the water parcel’s height is /h h , where  
is the mean reference density. Thus, the change in GPE for the 
water column above Point C is 

B C C C B C C B C B C/ /p h p h p h E E p .  (17)

Assuming the water parcel height is h=1m, the change in 
GPE due to exchanging water parcels along a section through 
129.5°W is shown in Fig. 16. Since pressure along this section 
varies only slightly between 500 and 580 (104 Pa), the change in 
GPE is proportional to the difference in pressure and elasticity. 
In the vicinity of Point B, these two terms are almost linearly 
proportional to the distance from Point B; thus, the GPE release 
(sink) is proportional to the square of the distance from Point 
B. In the far field, the energy sink gradually turns into a linear 
function of the distance (Fig. 16d).

The most important point from this calculation is that lat-
eral exchange of water masses on the PDS can lead to GPE re-
leased from the mean state. Thus, such thermohaline perturba-
tions are self-energized.

3.5 GPE change associated with subscale turbulent diffusion 
During the second stage, the left and right halves of water 

Column 1 and 2 are mixed. Due to the cabbeling effect, the den-
sity of the mixed product is higher than the mean density of the 
parent water masses. As a result, the whole water column and 
the mean sea level move downward (Figs 14a and e). In gen-
eral, cabbeling always releases GPE, and it is self-energized. Of 
course, the mechanical energy released associated with cabbel-
ing must come from some of the external sources of mechanic 
energy for the global ocean circulation.

The net GPE change due to isopycnal diffusion is the sum 
of these two processes. If the net GPE change is negative, the 
isopycnal diffusion is self-energized. On the other hand, if 

Table 1. Basic properties at two stations taken from the 129.5°W meridional section of the PDS 0.5=29.3 kg/m3

Station /°C S p/104 Pa E/kg·m−3

A (45.5°N) 4.649 5 34.098 512.45 4.585 8

B (47.5°N) 4.571 7 34.077 499.75 4.589 2

Difference (B–A) −0.037 8 −0.012 −12.70 0.003 4
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the net GPE change is positive, isopycnal diffusion cannot be 
self-sustained, and some local sources of mechanical energy 
is required. Since cabbeling associated with subscale diffusion 
always leads to release of GPE, our analysis in this section is fo-
cused on the GPE change due to isopycnal stirring associated 
with isopycnal eddy diffusion.  

3.6 GPE change associated with isopycnal stirring

3.6.1 Stirring along different directions in space 
Isopycnal diffusion has been accepted as a common knowl-

edge. The reason of why lateral diffusion has to take place along 
isopycnal has not been examined thoroughly. Is there some 
other directions which is even better for lateral diffusion?

To answer this question, we first examine the exchange of 
two parcels along the intersection ( s , red line with arrow, Fig. 
17) between a pressure surface P (green) and a PDS p (black, 
using reference pressure p). Although these two parcels have 
different temperature and salinity, they have the same in-situ 
density under pressure p. Since they sit on the same pressure 
surface, exchanging these two parcels does not change density; 
thus, stirring along line s  does not alter the GPE of the system. 

On the other hand, due to cabbeling effect when these two 
parcels mix with the local water, the density of the mixture is 
higher than the original parcels. Therefore, the total volume of 
the water parcels shrink, the corresponding centers of water 
columns above these parcels move downward. As a result, GPE 
is released. However, in this section our discussion is focused on 
the consequence of stirring alone; thus, we will not discuss the 
consequence of cabbeling due to the subscale diffusion.

Our next step in to examine the consequence of stirring 
along all possible directions in the three dimensional space. 
As shown in Fig. 17, stirring can be project to two components: 
stirring along vector s and on the blue plane V perpendicular to 
it. Since stirring along s does not change GPE, we will examine 
what happens if parcels are exchanged in all potential direc-
tions on the plane V (blue) perpendicular to the vector s  in Fig. 
17. On this plane, we can identify four vectors: the “horizontal” 
(constant pressure) vector h , the normal vector N of the PDS 

p, a vector n  which is on the PDS and perpendicular to both 
vectors s and N . In addition, there is a vector z which is op-
posite to the direction of gravitational force. 

It is well known that diffusion along the direction of N or 
z  requires doing work against gravitational force. We discussed 

the GPE change due to vertical stirring, i.e. along z , in Section 
1. Vector n is on the PDS, so isopycnal stirring and subscale dif-
fusion should take place along this direction; thus, our focus 
here is to examine what happens in the vicinity of vector n . We 
will take a plane view looking from the left side to right side of 
Fig. 17. 

3.6.2 Wedge of maximum GPE release
The first example is a meridional section through station 

(48.5°S, 30.5°W). The pivotal PDS is 1, the horizontal line pass-
ing Point O is at constant pressure p=1 000 (104 Pa), the vertical 
axis is in pressure coordinate (Fig. 18). This station is within the 
strong front of ACC, so that this PDS slopes up southward. At 
Station S, 1° south of Station O, the 1 surface intersects at a 
depth of 877.020 (104 Pa); the constant in-situ density surface 

 interests at depth of 989.4 (104 Pa); the ADS a intersects at 
depth of pP=877.407 (104 Pa). By definition, water parcel from 

Point O should arrive at pressure pP=877.407 (104 Pa) level in 
Station S adiabatically and acquires the local in-situ density. In 
fact, a is the PDS starting from pP at Station S and intersects 
Station O at 1 000 (104 Pa) level. Thus, 1 and a are two PDSs 
passing through Point O. As will be shown, the wedge defined 
by these two special PDSs is an optimal edge of isopycnal stir-
ring.

Density and its anomaly due to parcel exchanges are shown 
in Fig. 18b. Density of two water parcels originating from Point 
O and Station S are denoted as follows: Parcel O originally lo-
cates at Point O, and Parcel UL originally locates at the upper or 
upper left of Parcel O. The distance of color curves from origin 
O schematically indicates density of these water parcels, as a 
function of the angle . Here again, the angle  shows the angle 
distance from horizontal ( =0°) to vertical ( =90°). Note that in 
this figure the vertical distance along the vertical axis and the 
angle distance is not the accurate distance, and they are used 
for schematically illustration only. 

Starting from line OU, Parcel UL lies above Parcel O. For 
large-scale circulation the stratification is stable. Hence, Par-
cel O is heavier than Parcel UL, as shown by the intersection 
of thin blue and red line with the vertical line OU in Fig. 18b. If 
we exchange their positions, density of Parcel O declines during 
its upward motion, (O UL)< (O) , i.e. the heavy red curve is 
below the thin blue curve. However, when Parcel O arrives at 
the original location of Parcel UL, the corresponding density 
anomaly is positive, i.e. (O UL)> (UL). On the other hand, 
due to compression density of Parcel UL increases, and it satis-
fies (UL)< (UL O)< (O UL), as shown in Fig. 18b.

If the newly arriving parcel has a density lower (higher) than 
the in-situ density of the original parcel at the same location, 
water column above is pushed upward (downward) and GPE is 
increased (reduced), and external source of mechanical energy 
is required (released). As we turn the angle anticlockwise, the 
amplitude of density anomaly declines (Fig. 18b). PDS 1 in-
tersecting the water column at Station S at Point A, p=877.020 
(104 Pa), is a critical boundary of the domain discussed above 
(Fig. 18a). By definition, a parcel moving from Point A to the 
origin O should have the same in-situ density at Point O, i.e.  

(UL O)< (O) and the two blue curves intersect (Fig. 18b).
After the exchange, however, the in-situ density of Par-

P
V

N n

h
s

z σp

Fig.17. A sketch of the basic vectors on the pressure 
surface (green), PDS (black) and the plane (blue) per-
pendicular to these two surfaces.
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cel O is larger than that of the parcel originally at Point A, i.e. 
(O UL)> (UL), so the heavy red curve is outside the thin red 

curve. Thus, if these two parcels on this PDS exchange their po-
sitions, the water column above Point A shrinks and the total 
GPE will be reduced, so that such a water mass exchange is self-
energized.

As we turn the angle further anticlockwise, (UL O)− (O)  
becomes positive, but (O UL)− (UL) continues to decline. 
The ADS a is the second critical boundary. At Station S, it in-
tersects at p=877.407 (104 Pa) (point P in Fig. 18a). By definition, 
it satisfies (O UL)= (UL); however, (UL O)> (O), i.e. the 
in-situ density of water Parcel UL at Point O is larger than the 
original in-situ density there, as shown in Fig. 18b and Table 2. 
Therefore, the water column at Station O should move down-
ward and GPE will be released. Hence, within the wedge be-
tween 1 and a water parcel exchange leads to the release of 
GPE and such exchange is self-energized. In addition, cabbeling 
should lead to more GPE released. 

If we continue to rotate the angle anticlockwise, (O UL) 
becomes smaller than (UL) ; this implies that external me-
chanical energy is needed for supporting the increase of GPE. 
Although there is energy released due to water column shrink-
ing associated with moving the water parcel from the upper left 
to Point O, such energy is mostly lost through turbulence and 
dissipation. Thus, water mass exchange along such an angle 
cannot be self-sustained.

Near the end of rotation is the in-situ density surface (thin 
solid black lines in Fig. 18). Although (O UL)< (UL) , i.e. GPE 
at Station S is released, it is mostly dissipated through turbu-
lence. On the other hand, a further increase in (UL O)− (O) 

suggests that GPE at Station O is increased, hence more energy 
is required for sustaining exchange along this line.

The end of this rotation is exchanging along the constant 
pressure p=1 000(104 Pa). The corresponding density anomalies 
are quite large (Fig. 18b). This figure clearly suggests that GPE 
change associated with horizontal stirring is much larger than 
isopycnal stirring.

The discussion above is based on information at two sepa-
rate stations only, and the PDS is represented by two points at 
these two stations.  We can increase the resolution by dividing 
the distance between Stations O and S into many sub-stations 
with horizontal grids with resolution of (1/10)°, (1/100)°, and 
(1/1 000) °. Temperature and salinity at these refined grid points 
are calculated by linear interpolation from the 1° grid. A neu-
tral line can be found by following the original idea of Forster 
and Carmack (1976), using the simple Euler forward method. 
Starting from Point O, one can find the intersection of the 1 
PDS with the next sub-station on its southern side. Denote the 
corresponding depth (pressure) of this intersection as p1, then 
a new PDS p1

 can be defined, and its intersection with the next 
station on the left side can be found. In this way, a neutral line 
between Stations O and S can be calculated step by step.

On the other hand, both the potential density lines and 
adiabatic density lines are independent of the resolution used 
in calculation because the depth of these surfaces at any given 
station is defined completely independent of the water mass 
properties in the adjacent stations.  Depth differences between 
potential density lines 1 and adiabatic density lines a or neu-
tral lines  for different horizontal resolutions between Station 
O and S are shown in Fig. 19.
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Fig.18. A sketch of potential density line 1, adiabatic density line a and neutral line  (a. density surfaces in a meriditional section); 
density at the new location after exchange, as compared with the local in-situ density (b.  and in-situ as a function of the angle). 
Calculations are based on a meridional section along 30.5°W at 49.5°S and 48.5°S. 

Table 2. Density and its perturbations at three critical boundaries for the meridional section shown in Fig. 18
Point p/104 Pa p 1(O)− (p) 1(p)− 1(O) p(O)− p(p) 

A 877.020 2 31.722 30 0.566 3 0.000 000 0 0.000 166 3

P 877.406 6 31.724 30 0.564 5 0.000 166 9 0.000 000 0

R 989.412 8 32.239 04 0.000 0 0.048 718 0 −0.048 672 0

Notes: Density in  unit (kg/m3). p indicates local pressure, and it is also used to denote the water parcel taken from Station S at local 
pressure p ; p is the potential density using the local pressure p as the reference pressure, (p) is the in-situ density at local pressure p; 

1(O)= 1
0 and p(O) indicate potential density of water Parcel O at reference pressure 1 000 (104 Pa) and p; 1(p) and p(p) indicate poten-

tial density of water parcel p at reference pressure 1 000 (104 Pa) and p.
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By definition, for the case with a single step from Station O to 
S, the neutral line is coincident with that of a potential density 
line 1; but a is different from 1. As the horizontal resolution 
is increased, the end point of the  line varies slightly because 
the solution is resolution dependent. For resolution of 0.001 or 
higher, the neutral line converges to its limiting shape. The limit 
shape of the neutral line is schematically shown in Fig. 18 as the 
red lines. For the present case, its position is within the subscale 
turbulent diffusion wedge, i.e., between 1 and a. As shown 
above, the wedge of maximum GPE release is independent of 
the grid resolution.

The exact information of density perturbation induced by 
water mass exchange is shown in Fig. 20. As discussed above, 
negative (positive) density perturbation indicates that the cor-
responding water column above must be push upward (down-
ward), i.e. such an exchange needs (releases) mechanical en-
ergy.

As shown in Fig. 20b, when the water parcel from the upper 
left moves to Point O, the density anomaly at Point O is gradu-
ally increased from a large negative value. At the intersection 
of 1, density anomaly at Point O is exactly zero, as required by 
the definition of PDS. At this point, density anomaly at Point A 
is still positive.

We now select water Parcel UL level at Station S at a deeper 
level. At the intersection of a, density anomaly at Point A is ex-
actly zero, but density anomaly at Point O has a small positive 
value. Therefore, the wedge defined by these two surfaces is the 
region where the density anomaly induced by exchange is non-
negative.  As a result, such exchange must induce the release of 
GPE, and thus it is self-energized. 

As indicated by the solid red line in Fig. 20b, the sum of den-
sity anomaly at these two stations is practically constant within 
this wedge. The amount of GPE released due to the water par-
cel exchange is the product of density anomaly and the in-situ 

pressure. If we neglect the small difference in pressure at these 
two points, the total amount of GPE released due to water mass 
exchange is constant within this wedge.

Above this wedge, the GPE release at Station S is larger than 
the value indicated by the red line. However, the GPE change at 
Station O becomes negative; thus, external mechanical energy 
is needed. Since GPE released at Station S is mostly lost to small 
scale turbulence, exchange above the wedge may require exter-
nal mechanical energy for support, so it is less likely to happen. 
The situation below the wedge is quite similar.

We have thus modified the classical conception of isopycnal 
stirring: instead of claiming that water parcels can move along 
isopycnal surfaces (or NSs) free of GPE change, we state that 
isopycnal surfaces within the optimal wedge are the most favor-
able surfaces for lateral stirring. 

3.6.3 Wedge of minimum GPE source
As the second example, we discuss the situation at another 

station (20.5°N, 149.5°E ) (Fig. 21a). The situation is similar to 
Fig. 18. However, 1 intersects the water column at Station S 
south of station O at a pressure lower than a (Fig. 10a); thus, 
density anomalies on these two boundaries are opposite to the 
case in Fig. 18b.

By definition, when Parcel O moved to the upper left part 
along the a surface, it should have the same density as the lo-
cal water parcel, indicated by the intersection between the thin 
and red curves with the dashed black line in Fig. 21b. However, 
the water parcel moved from the upper left part to Point O has 
a density (heavy blue curve) smaller than the local density (thin 
blue curve) (Fig. 21b). As we continue to rotate the angle and 
reach PDS 1, (O UL)− (UL) becomes negative. By definition, 
the parcel that moved along 1 from the upper left part to Point 
O has the same density as the original local parcel. Thus, within 
the wedge defined by a and 1 water parcel exchange will lead 

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.4

−0.3

−0.2

−0.1

 0.0
D

ep
th

 d
iff

er
en

ce
/1

04  P
a

x

Depth difference between lines

 

 

σ1−γ (Δx=0.001)

σ1−γ (Δx=0.1)

σ1−γ (Δx=0.5)

σ1−γ (Δx=1)

σ1−σa (Δx=0.001)

σ1−σa (Δx=0.1)

σ1−σa (Δx=0.5)

σ1−σa (Δx=1)

Fig.19. Depth difference between the potential surface line with adiabatic density line and neutral lines constructed by different 
horizontal resolutions for the station based on a meridional section along 30.5°W at 49.5°S and 48.5°S. Note that 1− a are nearly 
identical for resolution of 0.1 and 0.001; thus, these two curves cannot be seen separately in this figure.



HUANG Rui Xin. Acta Oceanol. Sin., 2014, Vol. 33, No. 3, P. 19–39 35

to a negative density anomaly; thus, this leads to a source of 
GPE, and external mechanical energy is required for sustaining 
this exchange. The corresponding neutral line  with resolution 
of x=0.001° is schematically shown as the dashed red lines in 
Fig. 21. The corresponding density perturbations induced by 
exchanging water parcels are listed in Table 3. 

Density perturbations induced by water mass exchange are 
shown in Fig. 22. Negative density perturbation indicates that 
external mechanical energy is needed; while positive density 
perturbations implies release of GPE, and the exchange is self-
energized. Here again, a refining neutral line seems to be locat-

ed within the wedge defined by a and 1. 
The red vertical line in Fig. 22b indicates the sum of density 

anomaly at these two stations. Hence, a and 1 define a wedge, 
in which density anomalies associated with both water parcels 
are negative, and their sum is constant. If we neglect the small 
difference in pressure at these two points, the total GPE increase 
due to parcel exchange is constant within this wedge.

Above this wedge, density anomaly at Station O becomes 
more negative, implying that more external mechanical energy 
is need for supporting the exchange. Although density anomaly 
at Station S becomes positive, GPE released is mostly dissipated 

−60 −40 −20 0 20 40 60
1 000

 980

 960

 940

 920

 900

 880

 860

 840

 820

 800

Density perturbations/10−3 kg∙m−3 Density perturbations/10−3 kg∙m−3

Grid scale view (30.5°W, 48.5°S, 103 (104 Pa))

 

 

−1 −0.5 0 0.5 1
878.5

878.0

877.5

877.0

876.5

876.0
A refined view (30.5°W, 48.5°S, 103 (104 Pa))

 

 

σa  (877.407 (104 Pa))

D
ep

th
/1

04  P
a

D
ep

th
/1

04  P
a

σ1  (877.020 (104 Pa))

γ  (877.130 (104 Pa))

a b
ρ(UL→O)−ρ(O) ρ(UL→O)−ρ(O)
ρ(O→UL)−ρ(UL) ρ(O→UL)−ρ(UL)

Fig.20. Density perturbations obtained by exchanging water parcels O and UL, based on a meridional section along 30.5°W at 49.5°S 
and 48.5°S; the vertical axis indicates the pressure level where parcel UL is originally located. The red line in panel b indicates the sum 
of density anomaly of these two water parcels.

1 000   
997.088

       
983.567
983.545
983.507

       
       

       

O

U

S

A

P

R

southward  (∆y =111 km)

Pr
es

su
re

 /1
04  P

a,
 n

ot
 to

 sc
al

e

 

 

θ

O

U

S

σ1

σ

σa

σ1

σ

σa

γ γ

ρ(O→UL)
ρ(UL→O)

ρ(UL)
ρ(O)a b

Fig.21. A sketch of PDSs (a. density surfaces in a meriditional section); density at the new location after exchange, as compared with 
the local in-situ density (b.  and in-situ as a function of the angle), based on a meridional section along 149.5°E at 19.5°N and 20.5°N. 



HUANG Rui Xin. Acta Oceanol. Sin., 2014, Vol. 33, No. 3, P. 19–3936

through small scale processes. Hence, exchange in the domain 
above the wedge should require more external mechanical 
energy for support. The situation below the wedge is similar. 
Therefore, we conclude that stirring within this wedge requires 
the least amount of external mechanical energy. Hence, this 
wedge can be called the edge of minimum GPE source. 

3.7 GPE change in terms of elasticity
The density anomaly discussed above can be more conve-

niently calculated in terms of elasticity. As shown in Fig. 21, for 
small isentropic and isohaline perturbations we have

ρ ρ ρ δ

ρ

O A O

O
0 · O O

O O

→( ) = ( ) + ( )
= ( ) +

K S p p

E S

, ,

, ,
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Θ                  pp p( )δ / ,1 000               (18a)

0 A A

A A

A O A , ,

A , , /1000,

K S p p

E S p p               (18b)

where E is elasticity, O A0.5p p p  is the mean pressure 
of these two points, and p=pA−pO=−16.433 (104 Pa)<0. Since 

(O)= (A O), Eqs (18a) and (18b) lead to

A A O OO A A , , , , /1000

/1000 0 .

E S p E S p p

E p   (19)

One may use the elasticity based on the local pressure

*
A A A O O O

*

, , , , /1000

/1000.

E S p E S p p

E p       (20)

However, Eq. (20) is less accurate because these two values of 
elasticity are calculated at a different pressure (Table 4). If the 
same reference pressure, either the pressure at Point O or the 
middle point between these two points, is used in calculating 
the elasticity difference, the result is very close to that calculat-
ed directly from the density difference as discussed above.  

Table 3. Density and its perturbations at three critical boundaries for the meridional section presented in Fig. 21

Point p/104 Pa p 1(O)− (p) 1(p)− 1(O) p(O)− p(p) 

P 983.507 2 31.871 60 0.075 000 −0.000 058 0.000 000

A 983.566 5 31.871 90 0.074 800 0.000 000 −0.000 058

R 997.088 0 31.932 69 0.000 000 0.013 249 −0.012 335

Note: Density in  unit (kg/m3). p indicates local pressure, and it is also used to denote the water parcel taken from Station S at local 

pressure p, p is the potential density using the local pressure p as the reference pressure, (p) is the in-situ density at local pressure p; 

1(O)= 1
0 and p(O) indicate potential density of water Parcel O at reference pressure 1 000 (104 Pa) and p; 1(p)  and p(p)  indicate poten-

tial density of water parcel p at reference pressure 1 000 (104 Pa) and p.
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Notes: Unit of E  is kg/m3, unit of 
1000
E p

 is 10−3 kg/m3, unit of E* is kg/m3, unit of 
*

*

1000
E p

 is 10−3 kg/m3.

The analysis above is based on pressures at the Stations O 
and S. From Figs 18b and 21b, it is convenient to use the mean 
pressure between these two stations, and the density anomaly 
at Stations O and S should be equal to half of the density anom-
aly displayed in Figs 20b and 22b.  

Assume there are two parcels, Parcels B and T, on the same 
PDS O= 00 (Fig. 23). The pressure difference between these 
two water parcels is p=pB−pT>0. The mid pressure level is 
pO=(pT+pB)/2. Denote in-situ density of water Parcel B and Lo-
cations B, O, and T as (B), (B O), (B T), and in-situ den-
sity of water parcel T and locations T, O, and B as (T), (T O), 

(T B) . When water Parcels B and T move to pressure level pO, 
their in-situ density match the in-situ density of the water par-
cel originally sitting there, i.e. 

00B O T O .                        (21)

Thus, the in-situ density of these parcels can be written as fol-
lows 

00

00

B B,O / 2 000,

B T B,O / 2 000 ,

E p

E p
                 (22)

00

00

T T,O / 2 000,

T B T,O / 2 000 ,

E p

E p
                 (23)

where E(B, O) and E(T, O) are the elasticity of water Parcels B 
and T at Point O. Hence, after exchange the in-situ density 
anomalies at Stations B and T are

T B B T,O B,O / 2 000E E p ,       (24)

B T T T,O B,O / 2 000E E p .       (25)

In this way, during isopycnal stirring density anomalies at both 
stations are the same. Eq. (19) can be rewritten as follows

O

A A O O O O

2

O A A

, , , , /1000

/1000 .
n n n p

E S p E S p p

E E S E p
p S p p

      

 (26)

where = A− O, S=SA−SO, and n  is the normal vector shown 
in Fig. 17. The corresponding change of the layer thickness is 

h=− h / 0>0. The water column above pressure level ps is 
pushed upward, and the increase of GPE of the system is

2
0

0

/
1000

S
S S l

p hAp hA p hA E l ,          (27)

where

l
n n nn

E E S E p pE E p
l S l p l l

,       (28)

and l is the horizontal grid size, or the distance between centers 
of these two water parcels. Wherever E· p<0, GPE is reduced 
due to isopycnal stirring; thus, perturbations are self-energized. 
On the other hand, E· p<0, external source of mechanical en-
ergy is needed for sustaining isopycnal stirring.In general, the 
first term in Eq. (28) dominates. Since E <0, when potential 
temperature increases with increase of pressure, El<0 is satis-
fied. 

As an example, the horizontal distribution of the E· p  
term on the 0.5=29.3 kg/m3 PDS is shown in Figs 24 and 25. Be-
cause the magnitude of negative values is 100 times larger than 
the positive values, we show the maps of negative and positive 

p=pB

p=pO

p=pT

T

O

B

Station B Station TStation O

σO

Fig.23. A sketch illustrating exchanging of two water 
parcels lying on the same PDS 0 and with equal pressure 
difference above and below the reference pressure pO.

Table 4. Changes in density, pressure level, and elasticity for two stations shown in Figs 18 and 21

Station position p/104 Pa p/10-3 kg·m−3 p/104 Pa

Using the same reference pressure
Using local (different) reference 

pressures

E
1000
E p

E*
*

*

1000
E p

49.5°S, 30.5°W 877.0 0.166 3 −123.0 0.001 353 0.166 30 0.001 430 0.175 90

20.5°N, 149.5°E 983.6 −0.058 0 −16.4 −0.003 526 −0.057 93 −0.001 819 −0.029 88
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values separately. From Fig. 24, it is clear that the band of the 
ACC and the Gulf Stream are the places associated with a large 
amount GPE release associated with isopycnal diffusion. 

Since the isopycnal surface and other properties have strong 
meridional gradient, the related thermobaric instability dis-
cussed here tends to intensify in certain direction. Thus, iso-
pycnal diffusion supported by external source of mechanical 
energy should be non-isotropic in nature. However, this issue 
is left for further study.

On the other hand, in the equatorward edge of the subtropi-
cal gyres in the Pacific, the meridional pressure gradient and 
that of the potential temperature is in the same direction. As 
a result, in this region isopycnal stirring requires an external 

source of mechanical energy (Fig. 25).

3.8 Remark
According to the common wisdom, isopycnal mixing is 

free of energy. For a long time this is a statement without solid 
and careful proof. In this section we have gone through care-
ful analysis and show that it is not an accurate statement; in 
fact, isopycnal eddy diffusion can lead to GPE changes in the 
mean state. Thus, isopycnal eddy diffusion is not energy free, 
and energetics of isopycnal eddy diffusion should be carefully 
analyzed. Furthermore, GPE balance associated with isopycnal 
eddy diffusion should be used as a tool in the study of isopycnal 
eddy diffusion and its parameterization. 
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Fig.24. The gradient product of elasticity and pressure, negative values only (based on WOA01) ( 0.5=29.3 kg/m3). 
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