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Abstract A differentiable function whose contours are orthogonal to potential density (σ) contours does
not exist. However, such a function, called potential spicity (π), can be defined in the least square sense;
these two functions form a practically orthogonal coordinate system in potential temperature-salinity (θ-S)
space. Thus, in addition to the classical potential temperature-salinity (θ-S) diagram, seawater properties can
be studied in the potential density-potential spicity (σ � π) diagram.

Plain Language Summary Potential spicity is defined in the least square sense, forming a
practically orthogonal coordinate system with the potential density in potential temperature-salinity (θ-S)
space, which can be used to study seawater properties.

1. Introduction

The concept of a thermodynamic variable whose contours are orthogonal to potential density contours in the
potential temperature-salinity (θ-S) space has been discussed in many previous publications, for example,
Stommel (1962), Mamayev (1975), Veronis (1972), and Munk (1981). The orthogonality between this variable
and potential density is very important because this variable can describe temperature and salinity informa-
tion not included in potential density (Veronis, 1972).

In the early study by Veronis (1972), the concept of constructing a curvilinear coordinates system based on
potential density and potential spicity, which is orthogonal in the θ � S plane, was first proposed.
Mamayev (1975) went through a lengthy discussion about the advantage of introduction of such orthogonal
coordinates. Munk (1981) proposed to name such a thermodynamic variable as spiciness, whose contours are
orthogonal to potential density contours; he argued that the variety of such a variable along the isopycnals
should “give a measure of the strength of the intrusion.”

Jackett and McDougall (1985) demonstrated that in theory a differential function whose contours are exactly
orthogonal to those of potential density does not exist; this theoretical argument will be followed up in detail
shortly. Therefore, they abandoned the orthogonality constraint postulated by pioneers in the searching of
such function in previous studies. Their approach was following up in the subsequent studies, such as
Flament (2002) and McDougall and Krzysik (2015).

Note that in most previous studies, such as Flament (2002), Huang (2011), and McDougall and Krzysik (2015),
the term spiciness or spicity has been used in the paper titles and through most part of text. For water mass
analysis, it is much more accurate to call this function as the potential spicity (π), whose contours are ortho-
gonal to those of the potential density referenced to the same pressure. Thus, throughout this whole paper, a
more accurate terminology, potential spicity, is adapted and its application to the water mass analysis is
discussed briefly.

Similar to Jackett and McDougall (1985), McDougall and Krzysik (2015) “have opted to have the isopycnal
variations of spiciness be proportional to the isopycnal water-mass variations, expressed in terms of density.
Because of the nonlinear nature of the equation of state of seawater, this water-mass variation constraint
cannot be simultaneously satisfied with any definition of orthogonality. We have argued that there is no the-
oretical justification for any meaning of orthogonality”. Flament (2002) postulated a spiciness function whose
contours have slope of the same magnitude as those of the potential density, but the signs are opposite in
the θ-S diagram. Flament did not discuss the technical details associated with solving the nonlinear least
square problem in his approach.

The debate about how to define a useful thermodynamic variable in addition to the potential density has
been focused on two issues. First, whether we can define a thermodynamic variable whose contours are
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orthogonal to potential density contours. Second, what is the physical
meaning and advantage of such a function. The first question has no posi-
tive answer up till now. Despite several attempts, no potential spicity func-
tion satisfying the orthogonality constraint has been found. Regarding the
second question, although Veronis (1972) and Mamayev (1975) theorized
that the orthogonality makes it possible to construct a new orthogonal
coordinates for water mass study, since such a function was not available
for a long time, no specific advantages of using such a potential spicity
function have been discussed. Thus, up till now most studies are based
on the nonorthogonal functions, for example, the spiciness function
postulated by Flament (2002) and McDougall and Krzysik (2015). Huang
(2011) tried to define a potential spicity function whose contours are
orthogonal to those of potential density; however, the defined function
is not really orthogonal, as will be shown shortly. Without orthogonality,
the physical meaning of potential spicity would be less clear. For example,

it would be impossible for potential spicity acting as the density flux function as proposed by Mamayev
(1975).

The main goal of this study is to define a potential spicity function whose contours are orthogonal to the
potential density contours in the least square sense. Note that the orthogonality we defined here is based
on a fixed aspect ratio of the axes; if the aspect ratio of the axes is changed, any orthogonal coordinates will
become nonorthogonal; thus, this definition of orthogonal depends on the relative scales chosen for the axes
of the θ � S diagram, similar to Veronis (1972). The advantages of the orthogonal coordinates are fairly
obvious: both coordinates can be regarded as independent.

That the orthogonal coordinate system is superior to the nonorthogonal ones can be clearly illustrated in the
following example. From the basic formula in trigonometry, the lengths of the three sides of a triangle in
Figure 1 satisfy the following relation

c2 ¼ a2 þ b2 � 2ab cosγ: (1)

Thus, the distance between two points A and B in a plane satisfies the above equation. Hence, c2 ≤ a2 + b2,
and the equal sign holds only when γ = 90o, that is, when OB is orthogonal to OA. This is the common
knowledge that the distance between two points satisfies the simple relation c2 = a2 + b2 if and only if the
coordinate system is an orthogonal system.

In general, in orthogonal coordinates the signals can be separated into two components to the maximum
degree. For example, orthogonal coordinates have no off-diagonal terms in their metric tensor, such as the
2ab cos γ term in the equation above. In other words, the infinitesimal squared distance can always be written
as the sum of the squared infinitesimal coordinate displacements.

This paper is organized as follows. In section 2, we review the different approaches used in defining potential
spicity function. Since a scalar function whose contours are exactly orthogonal to those of potential density
does not exist in theory, we modify our goal in section 3, where a least square problem in terms of the root-
mean-square (RMS) angle deviation from the orthogonality is defined. However, this is a nonlinear least
square problem with multiple parameters, which is hard to solve directly. We propose a two-step approach.
In section 3, the original problem is modified as the searching of a scalar function whose gradient matches
the target vector obtained by rotating the gradient vector of potential density by 90°. In section 4, the solu-
tion is further improved by searching the solutions of a linearized nonlinear least square problem. Using the
solution obtained by the method discussed in section 3 as the initial solution, the final solution is obtained
through iteration. Potential spicity functions at different reference pressure levels are defined by applying
these methods to the previous version of equation of state, UNESCO EOS-80 in section 5 and the most
updated version of UNESCO TEOS_10 in section 6. These potential spicity functions can be used as tools in
the study of oceanography. As an example, we discuss the concept of radius of signal and its application
to a pair of station along the equatorial Pacific Ocean in section 7. Finally, we give a conclusion in
Section 8.

Figure 1. An example for a triangle in a rectangular plane.
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2. Define Potential Spicity by Line Integration

First of all, in order to define the so-called function perpendicular or orthogonal to each other for two families
of contours, we must use the same dimension for both axes of the θ � Sdiagram, so that we can compare
gradients at different directions in the θ � S space. Furthermore, a square grid box in such a phase space
should have the same length in the same unit. It is to emphasize that the orthogonality discussed in this study
is meaningful only for a fixed aspect ratio between the horizontal and vertical axis lengths. Therefore, we will
use the following pair of variables. Most importantly, they have the same dimensions as the potential density

x ¼ ρ0β0S;
∂
∂x

¼ 1
ρ0β0

∂
∂S

; y ¼ ρ0α0θ;
∂
∂y

¼ 1
ρ0α0

∂
∂θ

; (2)

where α0 ¼ α and β0 ¼ β are the mean values of thermal expansion and saline contraction coefficients aver-
aged on the domain of θ = [�2, 40](°C) and S = [10, 40](practical salinity units, psu). In this coordinates the
potential density gradient operator equals to

∇σ ¼ i
!∂σ

∂x
þ j
!∂σ

∂y
¼ i

! 1
ρ0β0

∂σ
∂S

þ j
! 1

ρ0α0

∂σ
∂θ

¼ i
! β

β0
� j
! α

α0
: (3)

On the sea surface, the net pressure is zero, p = 0, thus the thermodynamic state of seawater can be
expressed in terms of two variables (θ, S). In the traditional way, potential density is used as a dynamical vari-
able, the best choice of the other thermodynamic variable should be called potential spicity, which varies
along the potential density isopleths and it is denoted as π. There are many choices for this thermodynamic
variable. One of the choices discussed in previous studies is the requirement that the gradients of potential
density and potential spicity are perpendicular

∇σ�∇π ¼ 0: (4)

A simple way to construct such a function is to define it as follows,

πx ¼ �σy ; πy ¼ σx: (5)

If we can find such a function, and it is differentiable twice, then it is readily seen that the vector field asso-
ciated with the gradient of potential spicity is nondivergent, that is,

∇� ∇πð Þ ¼ 0: (6)

From equation (6), one can derive the following constraint,

∇� ∇σð Þ ¼ ∇� πy i
!� πx j

!� �
¼ σxx þ σyy ¼ 0: (7)

The left hand side of this equation may be called the source of potential density. As shown in Figure 2, the
commonly used function of potential density does not satisfy such a constraint. The source is primarily
due to the second term contribution associated with the increase of thermal expansion coefficient with tem-
perature. At low salinity and low temperature, the first term of the source is quite large compared with its
mean value, and this is the major obstacle in constructing the desirable potential spicity function orthogonal
to potential density.

In general, a vector g!¼ gx ; gyð Þ is called a conserved vector when its components satisfy the constraint:
∂gy/∂x = ∂gx/∂y. For a conserved vector, there exists a scalar function H(x, y), whose gradient equals this

vector, that is, ∇H x; yð Þ ¼ g!. The construction of such a scalar function can be carried out by the integration
of H(x, y) along chosen paths, and the results are independent of the choice of the integral path.

However, if the constraint ∂gy/∂x = ∂gx/∂y is not satisfied, a differentiable function which satisfies constraint

∇H x; yð Þ ¼ g! does not exist. In such a case, although one can construct a function by integrating the differ-
ential relation along certain selected paths, the results do not lead to a differentiable function. Most impor-
tantly, the results of such integration will depend on the selected paths. Therefore, potential spicity
(spiciness) functions obtained by following different integral paths are different, and they should also have
different physical meanings.
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Since potential density satisfies the differential relation

∇σ ¼ ρ0 �α∇θ þ β∇Sð Þ; (8)

the desirable potential spicity function should satisfy the differential relation

∇π ¼ ρ0c θ; Sð Þ β∇θ þ α∇Sð Þ (9)

where c(θ, S) is an arbitrary function. In previous studies, a slightly different differential relation was used

∇π ¼ ρ0 α∇θ þ β∇Sð Þ: (10)

Note that a function satisfies (10) is not orthogonal to density. A lot of efforts have been focused on finding
the solution by projecting constraint (10) onto certain curves and calculating the potential spicity function by

line integration. For example, Huang (2011) postulated the following
method. First, the potential spicity function is defined along a con-
stant salinity line S = S0. Second, starting from this constant salinity
line potential spicity function is constructed by projecting relation
(10) onto each constant temperature line, black lines with arrows in
Figure 3

Δπ ¼ ρ0∫
S
S0β θ¼const:j dS: (11)

Using the approach by Jackett and McDougall (1985), McDougall and
Krzysik (2015) used the following method. First, the spiciness function
is defined along a constant temperature line θ = θ0. Second, along
each constant potential density contour (blue curves with arrows in
Figure 3), ∇σ = 0. Thus, the spiciness function is constructed by start-
ing from this constant temperature line and projecting relation (10)
onto each constant potential density contour, blue lines with arrows
in Figure 3

Δπ ¼ 2ρ0∫
S
S0β σ¼const:j dS: (12)

Similarly, one can also construct another spiciness function as follows.
As the first step, the spiciness function is defined along a constant

Figure 2. The source terms, shown in equation (7), of the seawater potential density at sea surface pressure. psu = practical
salinity unit.

Figure 3. Selected integral paths for defining potential spicity function in the
θ � S space. Paths marked as black, blue, and red arrowed lines have been
used in Huang (2011), Jackett and McDougall (1985), and McDougall and
Krzysik (2015), and a similar method, respectively.
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temperature line θ = θ0. Afterward, spiciness function is constructed by projecting relation (10) onto each
constant salinity line, red lines with arrows in Figure 3

Δπ ¼ ρ0∫
S
S0α S¼const:j dθ: (13)

As discussed above, the potential spicity (spiciness) functions constructed through these different integral
paths must be different. Most importantly, although the potential spicity function satisfies the constraints
obtained by projecting the exact differential relation (10) onto the integral path, such functions do not satisfy
the original differential relations in directions other than the tangent of the integral path. Thus,
∇π ≠ ρ0(α∇θ + β∇S) in general; in particular, potential spicity function contours are not orthogonal to the
potential density contours. As such, the meaning of such defined potential spicity functions remains unclear.
In fact, although potential spicity had been used in many studies in the past, the physical meanings of this
variable remain poorly understood.

3. Define Potential Spicity in the Least Square Sense

As discussed above, a scaler function which exactly satisfies constraint (4) does not exist. However, we can
slightly modify our goal of the exact orthogonality as follows. By definition, the angle between ∇σ and ∇π

is λ ¼ arccos ∇σ�∇π
∣∇σ‖∇π∣

� �
, and the nonorthogonality can be measured in terms of the deviation from the target

value of 90°. We will search a function π(x, y) which can satisfy constraint (4) in the least square sense over the
domain of θ-S diagram, that is,

Δλ ¼ RMS arcsin
∇σ�∇π

∣∇σ‖∇π∣

� �� �
¼ Minimum: (14)

In the common practice, seawater properties are defined in terms of high-order polynomials, the task
defined by equation (14) is a least square problem in multivariables, with up to tens of variables. Such
a nonlinear least square problem is rather difficult to be solved. We will solve this least square problem
in two steps.

First, a target vector (�σy, σx) is created by rotating the gradient vector ∇σ; our goal is to search a scalar
function π, the components of whose gradient vector match the lengths of this target vector. As dis-
cussed above, it is impossible to find a perfect match. Therefore, we modify our goal as follows: searching
for a scalar function π, whose gradient vector match the length of the target vector in the least square
sense.

ΔR ¼ RMS πx þ σy
� 	2 þ πy � σx

� 	2� �
¼ Minimum: (15)

We will denote this scalar target function for π as f and will choose to fit this function in terms of a polynomial.
To illustrate the basic idea, we use a fourth order polynomial in the following discussion; hence, our goal is to
define the following fitting function, f, as

f ¼ a1x þ a2y þ a3x
2 þ a4xy þ a5y

2 þ a6x
3 þ a7x

2y þ a8xy
2

þ a9y3 þ a10x4 þ a11x3y þ a12x2y2 þ a13xy3 þ a14y4;
(16)

where ak (k = 1, 2, 3, …,14) is the fitting coefficients to be fixed. This function can be used to calculate the
potential spicity at each grid point (i, j) in the θ-S diagram. We assume that the vector A

!¼ Ax
i;j;A

y
i;j

� �
¼ �σyi;j; σ

x
i;j

� �
perpendicular to potential density is given for each grid point. We introduce the following

notations

dx ¼ xiþ1 � xi�1; dy ¼ yjþ1 � yj�1;Δx
2
i ¼ x2iþ1 � x2i�1;Δy

2
j ¼ y2jþ1 � y2j�1;

Δx3i ¼ x3iþ1 � x3i�1;Δy
3
j ¼ y3jþ1 � y3j�1;Δx

4
i ¼ x4iþ1 � x4i�1;Δy

4
j ¼ y4jþ1 � y4j�1:

(17)

Using the central difference scheme, we have the following finite differences

10.1029/2018JC014306Journal of Geophysical Research: Oceans

HUANG ET AL. 7355



Δf xi;j ¼ a1dx þ a3Δx2i þ a4yjdx þ a6Δx3i þ a7yjΔx
2
i þ a8dxy

2
j

þ a10Δx4i þ a11Δx3i yj þ a12Δx2i y
2
j þ a13dxy

3
j ;

(18)

Δf yi;j ¼ a2dy þ a4xidy þ a5Δy2j þ a7x
2
i dy þ a8xiΔy2j þ a9Δy3j

þ a11x3i dy þ a12x2i Δy
2
j þ a13xiΔy3j þ a14Δy4j :

(19)

Our goal is to fit the given vector A
!¼ Axi; j;A

y
i; j

� �
. For the x-component of the vector, ideally we should have

Δf xi; j ¼ Xi; j; where Xi; j ¼ dx�Ax
i; j: (20)

Thus, the corresponding error in fitting this component of the vector is

εx ¼ Δf xi; j � Xi; j: (21)

Similarly, the errors in fitting the other component of the vector is

εy ¼ Δf yi; j � Yi; j; where Yi; j ¼ dy�Ayi; j: (22)

Therefore, the target of least square problem (15) is to minimize the following function

E ¼ Δf xi; j � Xi; j

� �2 þ Δf yi; j � Yi; j

� �2
: (23)

The constraints of minimizing this target function are

δE=δak ¼ 0; k ¼ 1; 2; 3;…; 14: (24)

For example, at grid (i, j) the first constraint δE/δa1 = 0 leads to

Δf xi; j � Xi; j

� �
dx ¼ 0: (25)

Summarize over all grids leads to the following equation

∑
i; j
Δf xi; jdx ¼ ∑

i; j
Xi; jdx; (26)

where the left-hand side is a linear function of ak (k = 1, 2, 3, …, 14).

The second example is for the constraint δE/δa7 = 0. At a grid (i, j) this constraint leads to

Δf xi; jΔx
2
i yj þ Δf yi; jx

2
i dy ¼ Xi; jΔx2i yj þ Yi; jx

2
i dy: (27)

Summarizing over all grids leads to

∑
i; j

Δf xi; jΔx
2
i yj þ Δf yi;jx

2
i dy

� �
¼ ∑

i; j
Xi; jΔx2i yj þ Yi; jx

2
i dy

� �
; (28)

where the left-hand side is a linear function of ak (k = 1, 2, 3, …, 14).

The final set of linear equations for the coefficients ak (k = 1, 2, 3, …, 14) is

F� a!¼ e!; (29)

where F is a 14 × 14 matrix, both a! and e! are 14-dimensional vectors; the construction of both F and e! are
discussed above. From equation (29), we can calculate vector a! by simply inversing the matrix F
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a!¼ F�1� e!: (30)

With the vector a! calculated, the potential spicity function in terms of a fourth order polynomial is comple-
tely determined.

Although the result of this calculation gives us a fitting function f, whose gradient vector satisfies the least
square constraint (15), the error of angle deviation from orthogonality is still rather large. Thus, such a scalar
function is not the desirable solution for the least square problem (14). In order to find solution with smaller
angle deviation from orthogonality, at the second step we will use an iteration process to solve the original
least square problem (14), and the solution obtained from solving least square problem (15) can be used as a
good candidate for initial solution at the beginning of the iteration process discussed below.

4. Solve the Linearized Least Square Problem

For small angle, the least square problem defined in equation (14) can be reduced to

Δλ ¼ RMS
∇σ

∣∇σ∣
� ∇π
∣∇π∣

� �
¼ Minimum: (31)

Directly solving this nonlinear least square problem is difficult. However, this problem can be further reduced
to the following linear least square problem

Δλ ¼ RMS
∇σ�∇π

∣∇σ‖∇π0∣

� �
¼ Minimum; (32)

where π0 is the initial result of the approximate potential spicity function obtained in the previous iteration
and π is the potential spicity function calculated as the new corrected solution. In fact, the solution obtained
from equation (29) can be used as a good first initial solution.

The target function of the problem defined in equation (32) is

C ¼ 1
R

σxπx þ σyπy
� 	2

; R ¼ σx2 þ σy2
� 	

π0;x2 þ π0;y2
� 	

: (33)

Following the notation used in the previous section, we have

πx ¼ Δf xi;j=2Δx; πy ¼ Δf yi;j=2Δy: (34)

The constraints of minimizing this target function are

δC=δak ¼ 0; k ¼ 1; 2; 3;…; 14: (35)

For example, this constraint upon the first parameter, a1, leads to an equation

0 ¼ δC=δa1 ¼ 2
R
σxπx þ σyπy
� 	 σx

2Δx
δΔf xi; j=δa1 þ

σy
2Δy

δΔf yi; j=δa1

� �

or
σx
RΔx

σxπx þ σyπy
� 	

dx ¼ 0:
(36)

This relation should apply to each grid point, and the summation over all grid points leads to the following
equation

∑
i; j

σx
RΔx

σxπx þ σyπy
� 	

dx ¼ 0: (37)

Note that R in the denominator is specified from the previous iteration; πx & πy in (σxπx + σyπy) is treated as
unknown; thus, they are the linear function of unknown ak (k = 1, 2, 3, …, 14).
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Similarly, we obtain the corresponding equations for parameter a2, a3,…,, a14. In this way, we obtain one set
of equations system of 14 variables ak (k = 1, 2, 3, …, 14) and 14 equations, similar to equation (29).

b1;1 b1;2 : b1;14

b2;1 b2;2 : b2;14

: : : :

b14;1 b14;2 : b14;14

2
6664

3
7775

a1

a2

:

a14

0
BBB@

1
CCCA ¼ 0; (38)

where the matrix B = (bij) is defined in a way similar to the procedure leading to equation (29) discussed
above. However, the right hand side of this equation system is zero; thus, the only solution is trivial of zero.
To find meaningful solutions we choose the following iterative approach, and solutions obtained from the
linear least square problem defined in equation (29) can be used as the first initial solution.

The original equation system (38) is separated into two parts. First, we rewrite the first equation in the follow-
ing form

a11 ¼ � b1;2a
0
2 þ b1;3a

0
3 þ…þ b1;14a

0
14

� 	
=a11: (39)

Using a02; a
0
3;…; a014

� 	
from the previous solution, we can calculate a11, the first parameter of the new solution.

When this new valuea11 is obtained, we can calculate the new values of other parameters by using the follow-
ing equation system, which is a subset of the original equation system (38)

b2;2 b2;3 : b2;14

b23;2 b3;3 : b3;14

: : : :

b14;2 b14;3 : b14;14

2
6664

3
7775

a12
a13
:

a114

0
BBBB@

1
CCCCA ¼ �a11

b2;1

b3;1

:

b14;1

0
BBB@

1
CCCA: (40)

Solving this equation can lead to an improved solution with smaller RMS of the angle errors over the θ-S dia-
gram. This approach can be applied iteratively. Since the original least square problem is defined of a multi-
dimensional parameter space, there occur many solutions corresponding to localized minima in the
parameter space; among these solutions we choose the one with the smallest RMS error of angle deviation
from orthogonality.

5. Potential Spicity Functions Based on UNESCO EOS-80

This method is applied to find potential spicity function based on UNESCO EOS-80 equation of state (Unesco,
1981, 1983). In order to cover a wide range of salinity, the calculation is based on a tenth order polynomial.
The Matlab program of the potential spicity function is in the form similar to the available Matlab code for
calculating potential density, that is, it is in the form of sw_pspi(s,t,p,pr), where (s, t) is the in situ salinity
(psu) and temperature (°C), p is the in situ pressure (db), and pr is the reference pressure. These potential spi-
city functions are defined over the domain of θ = [�2, 40](°C) and S = [10, 40](psu); the domain of definition is
broad enough, so that these functions are applicable for oceanographic application in the open ocean,
including the Arctic. For the convenience of application, we define potential spicity function at seven refer-
ence levels: pr = 0, 500, 1,000, 2,000, 3,000, 4,000, and 5,000 (db), respectively.

In addition to the orthogonality constraint, the final definition of potential spicity function requires two addi-

tional constraints. First, we set the potential spicity to be zero at the mass center S; T
� 	

for each reference

level, which is calculated from WOA09 data (Antonov et al., 2010), as listed in Table 1.

Second, the amplitude of the potential spicity satisfying the orthogonality is arbitrary; thus, we rescale the
potential spicity function so that within the definition domain at each reference level, the averaged ampli-

tude of the gradient ratio is ∣∇π∣=∣∇σ∣
core domain ¼ 1, where the core domain is defined as θ = [0, 30]

(°C) and S = [32.5, 37.5](psu). With these two constraints, the potential spicity function is completely
determined.
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As the first example, the potential spicity function defined at sea surface pressure is shown in Figure 4a. It is
readily seen that potential density and potential spicity contours are orthogonal. In particular, at low salinity
and low temperature the thermal expansion coefficient is negative, thus the potential density contours are
convex toward low salinity. As a result, the potential spicity contours in this vicinity are convex upward.
Whether two families of contours are orthogonal or not may be hard to judge by naked eyes; thus, we calcu-
late the angle deviation from the 90°, with results shown in Figure 4b. For this case the RMS of angle deviation
from orthogonality is quite small at the value of 0.0009°. In fact, the largest errors appear along the edge and
corners of the domain; however, within the interior of the domain, the angle deviation from orthogonality is
on the order of 0.0001° only.

As discussed in Appendix A, such small deviation from orthogonality indicates that the errors in distance
defined in terms of the σ � π coordinates are much smaller than the errors induced in the in situ salinity

Table 1
S; T
� 	

Based on WOA09 at Different Reference Pressure pr

pr (db) 0 500 1,000 2,000 3,000 4,000 5,000

S (psu) 34.5914 34.6567 34.5997 34.7311 34.7468 34.7336 34.7266
T (°C) 18.1534 7.3949 4.2768 2.3580 1.7434 1.4064 1.3184

Note. psu = practical salinity unit.

Figure 4. (a) Potential density (σ0) and potential spicity (π0) contours in the θ � S plane over the definition domain of
θ = [�2, 40](°C); S = [10, 40](psu); (b) angle deviation from orthogonality. RMS = root-mean-square; psu = practical salinity
unit.
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and temperature measurements; thus, the newly defined potential spicity function can be accepted as a
nearly perfect orthogonal to the potential density.

The main domain of definition adapted in this study is θ = [�2, 40](°C) and S = [10, 40](psu). However, away
from the Arctic Ocean, most seawater is confined to a much smaller domain in the θ � S space. Thus, a nar-
rower domain θ = [0, 30](oC); S = [32, 38](psu) is defined, and this domain covers the most part of seawater in
the open ocean application.

The basic feature of potential spicity within this domain is shown in Figure 5. As shown in Figure 5b, the
largest error of angle deviation from the orthogonality is within 0.0025°. It is clearly indicated that poten-
tial spicity contours are orthogonal to the contours of potential density, with even small deviation from
orthogonality. Such a potential spicity can be used to construct the orthogonal coordinates
postulated above.

As the second example, the potential spicity function defined for the reference pressure of 2,000 db is
shown in Figure 6. It is readily seen that potential density and potential spicity contours are orthogonal.
At this case the RMS of angle deviation from orthogonality is quite small at the value of 0.0001°. As shown
in Figure A1, the relative angle errors associated with distance defined in the σ � π coordinates are
totally negligible.

6. Potential Spicity Functions Based on UNESCO TEOS_10

The most updated equation of state is defined as UNESCO TEOS_10 (McDougall & Barker, 2011). Accordingly,
the suitable thermodynamic variables are the conservative temperature, denoted asΘ (°C), and absolute sali-
nity, denoted as SA (g/kg). Similar to the case of UNESCO EOS-80, the definition of potential spicity function

needs two additional constraints. First, we set the potential spicity to be zero at the mass center (Θ, SA ) for
each reference level, which is calculated from WOA09 data, as listed in Table 2.

In comparison with UNESCO EOS-80, potential spicity defined in UNESCO TEOS_10 has angle deviation
slightly larger, as shown in Figure A1. Nevertheless, these errors of angle deviation from the orthogonality

Figure 5. (a) Potential density (σ0) and potential spicity (π0) contours in the θ � S plane over the domain of θ = [0, 30](°C);
S = [32, 38](psu); (b) angle deviation from orthogonality. psu = practical salinity unit.
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is quite small, and they are negligible compared to the relative errors associated those met in the in
situ observations.

Following the currently used notation in the Matlab code based on TEOS_10, the potential spicity function is
defined in the form of gsw_pspi (SA, Θ, pr), where (SA, Θ) is the absolute salinity (g/kg) and conservative tem-
perature (°C) and pr is the reference pressure (db). These potential spicity functions are defined over the
domain of Θ = [�2, 40](°C) and SA = [10, 40](g/kg). For the convenience of application, we also define poten-
tial spicity at seven reference levels: pr = 0, 500, 1,000, 2,000, 3,000, 4,000, and 5000 (db), respectively.

Figure 6. (a) Potential density (σ2) and potential spicity (π2) contours in the θ � S plane over the definition domain of
θ = [�2, 40](°C); S = [10, 40](psu); (b) angle deviation from orthogonality. RMS = root-mean-square; psu = practical salinity
unit.

Table 2
SA;Θ
� 	

Based on WOA09 at Different Reference Pressure pr

pr (db) 0 500 1,000 2,000 3,000 4,000 5,000

SA (g/kg) 34.7552 34.8231 34.7693 34.9045 34.9219 34.9090 34.9031
Θ (°C) 18.1532 7.3420 4.1973 2.2145 1.5201 1.0894 0.8894
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As an example, we show the contours of σ0 and π0 defined at the surface pressure in Figure 7. It is readily seen
that potential spicity contours are orthogonal to the potential density contours. The exact error of angle
deviation from orthogonality is shown in Figure 7b. For this case the RMS error is about 0.00216°.
Although this value is slightly larger than the corresponding value of 0.0009° defined in terms of UNESCO
EOS-80, it is quite small and acceptable, as shown in Figure A1.

The basic feature of potential spicity within the narrower domain is shown in Figure 8. It is readily seen that
potential spicity contours are orthogonal to the contours of potential density, with even smaller deviation
from orthogonality.

7. Application of σ � π Coordinates

With the introduction of potential spicity we now have a dual pair coordinate system, that is, θ � S and σ � π.
Thus, in addition to the traditional θ � S diagram used in oceanography, one can also use the σ � π diagram
for water mass analysis. An in-depth discussion of the meaning of potential spicity and the usage of the σ � π
coordinates are beyond the scope of this paper, and will be presented in a separated publication.

As an example, we discuss the concept of radius of signal. In the traditional θ � S plane, it is rather difficult to
quantify how much the signal spreads because both axes are with different dimensions and the thermal
expansion and haline contraction coefficients vary in the parameter space. With the introduction of this
new (approximately) orthogonal curvilinear coordinates σ � π, the situation is quite different because now
we can define the distance between two water parcels, with properties (θ1, S1)(θ2, S2), or using the sea

Figure 7. (a) Potential density (σ0) and potential spicity (π0) contours in the Θ-SA plane over the definition domain of
θ = [�2, 40](°C); SA = [10, 40](psu); (b) angle deviation from orthogonality. RMS = root-mean-square.
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surface as the reference level equivalently we have (σ0, 1, π0, 1)(σ0, 2, π0, 2). The corresponding distance
between these two water parcels are

D1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0;1 � σ0;2
� 	2 þ π0;1 � π0;2

� 	2q
: (41)

A simple and vitally important application of the concept of distance is the radius of signal. First, from the
original data point (σi, πi) we calculate the mean potential density and potential spicity σ; πð Þ corresponding
to the mass center of signal. Then the radius of signal is defined in terms of contributions due to the root-
mean square values of (σi, σ) and (πi-π)

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rms σi � σð Þ½ �2 þ rms πi � πð Þ½ �2

q
: (42)

The radius of signal can be used to evaluate the data scattering.

Based on the monthly mean GODAS data (Behringer & Xue, 2004), provided by the NOAA-ESRL Physical
Sciences Division, Boulder, Colorado, from their Web site at https://www.esrl.noaa.gov/psd/, we select two
locations A (179.5°E) and B (100.5°W) along the equator (0.5°S). Both locations are at the depth of 145 m from
1980 to 2015. Since the location A is well above the equatorial main thermocline, its water mass properties
(such as θ and S) carry strong variability related to ENSO events. As a result, the θ-S properties scatter greatly
in the θ-S plane, as shown in Figure 9a. On the other hand, location B is near the eastern boundary and below
the main thermocline at this location, the variability in water mass properties is much less affected by the
ENSO processes; consequently, the water mass properties at location B vary much smaller amplitude than
A, as shown in the upper panels of Figure 9. However, it is rather difficult to quantify the signal spreading
in the traditional θ � S diagram.

Using the σ � π coordinates, we can calculate the distance between two water masses and RMS distance
from the center of mass. As shown in the lower panels of Figure 9, the radius of signal at location A is
0.8665 (kg/m3), which is much larger than that at location B, 0.2194 (kg/m3). This example demonstrates
the usefulness of calculating the distance between water masses and the radius of signals.

Figure 8. (a) Potential density (σ0) and potential spicity (π0) contours in the Θ-SA plane over the domain of Θ = [0, 30](°C);
SA = [32, 38](g/kg); (b) angle deviation from orthogonality.
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8. Conclusion

It is possible to define a potential spicity function, whose contours are (in the least square sense) orthogonal
to those of potential density. Introducing such functions opens up a new approach in oceanography. First of
all, it can be combined with the potential density to form an orthogonal coordinate system. The σ � π
diagram provides another diagnostic tool for water mass analysis in the world oceans; in particular, the
orthogonality of the coordinate enables us to define the distance between water masses and thus the radius
of signal and radius of the state. The physical meaning of such defined potential spicity and its application will
be discussed in a separated paper. Due to the nonlinearity of the equation of state, if the local pressure is too
far away from the reference pressure, potential density does not represent the stratification accurately, and
the corresponding potential spicity may not be very accurate. Therefore, in application it is recommended
that a reference pressure in the middle of the pressure range is chosen as the reference one.

Appendix A: Errors in Distance Associated With Nonorthogonality

The errors in distance induced by nonorthogonality can be estimated as follows. In a nonorthogonal curvi-
linear coordinates (χ, η), the distance between two grid points is defined as

ds2 ¼ Δχ2 þ Δη2 � 2Δχδη cosγ; (A1)

where Δχ and Δη are the infinitesimal arc length projected onto the coordinates axes and γ is angel between

Figure 9. θ � S (upper panels) and σ � π (lower panels) diagrams for two grid points taken at depth of 145 m along the
equatorial ocean, with respective longitude of 179.5 (left panels) and 100.5°W (right panels), based on GODAS data. The
red dots correspond to the mean values and the red circles refer to the radius of signal. psu = practical salinity unit.
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these two arc elements. Assume Δχ = Δη = 1 and denote angle deviation from orthogonality as δγ, then the
distance is

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cosγð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� sinδγð Þ

p
: (A2)

The second term is the off diagonal term in the matrix tensor. If we assume the coordinates are nearly ortho-
gonal and thus omit this term, the nominal distance is dsnomi ¼

ffiffiffi
2

p
; therefore, the relative error in distance is

δr ¼ dsnomi�ds
ds ∼0:5 sinδγ∼0:5δγ. In terms of the commonly used unit of degree, the estimated relative error is

approximately equal to π
360 δγ∼0:00873δγ

oð Þ.
Errors associated with field salinity and temperature observations are on the order of 0.001 (psu) and 0.001 °C.
Assuming the normal range of salinity is 30–40 psu and the normal range of temperature is 0–40 °C; thus, the
relative errors in potential density based on in situ salinity and temperature observation is on the order of
0.01%. Figure A1 shows clearly that error associated with the nonorthogonality induced by the definition
of potential spicity is 10–100 times smaller than that induced in observation. Therefore, the error induced
in the definition of potential spicity function is completely negligible.
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