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Abstract The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas.
However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate
a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives
rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the
topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred
from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling
generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore
intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East
China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general
circulation theory and shelf dynamic theory.

Plain Language Summary The water and material exchange between global ocean and marginal
sea is attracting immense research interest because it significantly influences the coastal hydrodynamic
environment and ecosystem. We first report the topographic beta spiral inferred from observations, which is
generated by strong upwelling induced when strong western boundary current runs onto steep topography
in coastal sea. We postulate that this mechanism plays a vital role in regulating intrusion/bifurcation of
western boundary currents. This mechanism may be at work in many places in the world oceans; thus, it can
be used as a clue in predicting the intrusion path and the bifurcation pattern of strong boundary currents.
Similar to Ekman spiral, topographic beta spiral is one kind of very important and common spirals in the
world oceans. In some cases, topographic beta spiral suggests that the intruding water mass originates from
the deep water of western boundary current rather than surface water. Since temperature, oxygen and
nutrients in the deep water are significantly different to the shelf water, this intruding water can influence
coastal ecosystem and hypoxia.

1. Introduction

In the subtropical North Pacific Ocean the balance between the Ekman pumping and the planetary-vorticity
gradient gives rise to the equatorward flow in the ocean interior, which is compensated by an intensified
western boundary current, the Kuroshio Current, whose pathway in the East China Sea (ECS) is constrained
by the continental slope of the ECS. The intrusion of the Kuroshio into the ECS plays an important role in
the ocean circulation system over the ECS shelf, because the Kuroshio water is warm, salty, and rich in phos-
phate in the deep water. It has been reported that the intrusion of the Kuroshio mainly occurs northeast of
Taiwan (Guo et al.,, 2006; Hsueh et al., 1992; Qiu & Imasato, 1990; Tang et al.,, 1999; Wu et al., 2017; Yang
et al,, 2011). Yang et al. proposed that there were two branches of the Kuroshio in the lower layer of the
ECS in summer: a nearshore Kuroshio branch current (NKBC) and an offshore Kuroshio branch current
(OKBCQ) (Yang et al., 2012).

The mechanism of the Kuroshio intrusion has been extensively investigated. The meeting of the Kuroshio
with the zonally running shelf break northeast of Taiwan in the summer (the 200 m isobath in Figure 1 reflects
the location of the shelf break) is an important factor for the onshore intrusion of the Kuroshio (Hsueh et al.,
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Figure 1. The Kuroshio intrusion inferred from hydrographic data. (a) The 10 day mean sea surface temperature (SST)
(Maturi et al., 2014) corresponding to the cruise period from 29 August to 7 September 2015; (e) The absolute dynamic
topography (ADT) and geostrophic current averaged over the same period, where the numbers indicate the station loca-
tions. (b—d) Observed temperature and (f-h) salinity.

1992; Hsueh et al., 1993; Tang et al,, 2000). The planetary B effect and Taiwan Island are thought to be the
main driving factors for the Kuroshio branch current (KBC) northeast of Taiwan (Qiu & Imasato, 1990).Using
an idealized one-layer model (Hsueh et al., 1992) and a two-layer model (Hsueh et al., 1993), a formula for
the intrusion angle of the KBC was postulated. It is also theorized that the seasonal variation of the onshore
flux of the Kuroshio is mainly modulated by the Ekman transport, the seasonal variation of the Kuroshio main-
stream, and the joint effect of the baroclinicity and relief term (Guo et al., 2006; Jacobs et al., 2000; Wu et al.,
2014). Oey et al. (2010) concluded that winter cooling alone could cause a great northward intrusion of KBC
onto the ECS shelf. It was reported that the Kuroshio intrusion can be partly attributed to vortex stretching of
the intruded water column over topography (Yang et al., 2012) and to the westward impingement of eddies
from the open ocean on the Kuroshio mainstream (Wu et al,, 2017; Yin et al.,, 2017). The vertical structure of
the Kuroshio intrusion was also inferred from the paths of major currents north of Taiwan (Yang et al., 2012);
as shown in their Figure 14, the Kuroshio turns cyclonically from the surface to the bottom when it intrudes
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onto the ECS shelf (Yang et al., 2012). In fact, it was reported that the KBC turns gradually to the west with
increasing depth (Tang et al., 1999; Wong et al., 2000).

Despite recent progress, the driving mechanism of the NKBC intruding farther shoreward onto the ECS shelf
compared with the OKBC remains to be investigated. Here we suggest a topographic beta spiral that can
explain the vertical structure of the Kuroshio branches northeast of Taiwan and interpret the observed char-
acteristics of the Kuroshio subsurface water on the ECS shelf that previous theory could not explain.

2. Observed Kuroshio Intrusions on the ECS Shelf

Recent cruise data from the ECS, collected by the Institute of Oceanology, Chinese Academy of Sciences
(IOCAS) from 26 August to 2 September 2015, were used to examine the structure of the Kuroshio intrusion.
Temperature and salinity were collected at each station, using the shipboard SBE 911 plus conductivity-tem-
perature-depth (CTD) sensor manufactured by Sea-Bird.

Two cold and salty cores can be clearly seen in Figures 1b and 1f, and the nearshore core is 1° colder than the
offshore core. This phenomenon is also evident in Figures 1c and 1g, although it is not as clear as that in
Figures 1b and 1f. This feature has been previously identified in summer 2009 (Yang et al., 2012). In addition,
it can also be easily identified in Figure 3 in Katoh et al. (2000), where the bottom water is colder in the shal-
low nearshore area than in the deep offshore area, see stations A1-A19 in their Figure 3. Therefore, this phe-
nomenon is a relatively steady and common feature of the Kuroshio intrusion. Furthermore, in transects
farther northward, these two cores were more clearly separated from each other (Figures 1b-1d and 1f-1h).

3. Theory

Large-scale motions in the ocean satisfy the geostrophic and hydrostatic approximations; the general form of
density balance in a steady state is

upy + vp, +wp, = AV + Avp,, — aq/cp, (1)

where u, v, and w are current components in x, y, and z directions in Cartesian coordinates, p is the density,
the thermal expansion coefficient, g the rate of heating per unit mass, ¢, the specific heat at constant pres-
sure, and Ay and Ay the horizontal and vertical thermal diffusivities. The velocity angle is defined
as 6 =tan~ ' (v/u). Taking the derivative with respect to zand using the density balance and thermal wind rela-
tion lead to a relation (see the equation 2.232 in Huang, 2010):

@ __r
dz w2+ v2

9

== 2
o P)

[sz + aq/cp + AHCz/y - Aszz} )Y
where g gravitational acceleration,f the Coriolis parameter, pq the reference density, and {, the vertical com-
ponent of the relative vorticity. This equation contains the vertical velocity and stratification term, cooling
term, and the horizontal/vertical diffusion terms. Schott and Stommel (1978) first developed the theory of
beta spiral; their basic equation (1.4) includes the first two terms in equation (2). If diffusion and cooling terms
are negligible, we obtain

%:ﬁw%,uh:u—o—v. (3)
According to equation (3), the horizontal current rotation with depth is regulated by the vertical velocity and
stratification; this is an important diagnostic relation for the beta spiral in the ocean, which is identical to
equation 2.233 of Huang (2010) and equation 6.20.29 of Pedlosky (1986). The most important implication
of this equation is that in the stratified ocean interior water column compression/stretching should lead to
the rotation of the horizontal velocity vector.

In the wind-driven gyre interior the basic vorticity balance is fv = fow/dz. Thus, the compression of the water
column induced by Ekman pumping gives rise to horizontal advection due to the planetary vorticity gradient
term f; the compression of water column also leads to the rotation of the horizontal velocity vector in the
stratified ocean, and thus the name of the £ spiral. For example, a £ spiral in the mid-ocean of Northern
Pacific Ocean is generated by the negative wind stress over the Pacific Ocean due to the midlatitude atmo-
spheric westerly winds and trade winds in the equatorial regions.
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Figure 2. Sketch of the topographic beta spiral. (left) Topography and the Kuroshio mainstream. (right) Sketch of the topo-
graphic beta spiral. ux denotes the horizontal velocity in the ocean interior above the bottom boundary; uy, indicates
onshore flow in the bottom Ekman layer; zg is the upper edge of the bottom Ekman layer, and u;, is the horizontal current
vector at zg.

In coastal areas, the strong boundary current moves on or offshore of the shelf break and can lead to the
upwelling/downwelling near this area; this provides the vertical velocity required for generating the spiral.
In recognizing the connection with the pioneering work of Schott and Stommel (1978) and Stommel and
Schott (1977), we name this velocity structure the “topographic beta spiral.”

Note that on the continental shelf, there is a strong Ekman layer in the bottom water (Figure 2), which is, how-
ever, negligible in the mid-ocean because the deep water is usually considered as motionless. In fact, equa-
tion (3) omits the contribution due to friction in the boundary layers. As a result, equation (3) is only
applicable to the middle water column away from the Ekman layers on the surface and bottom, where the
horizontal current vectors are strongly affected by friction. On the ECS shelf the average thickness of bottom
Ekman layer at 200 m isobaths is ~18 m (Zhang et al., 2017). Between these two boundary Ekman layers, the
horizontal velocity vector should rotate with depth according to equation (3).

4. Application of the Theory in the ECS

As shown by sea surface temperature (SST) in the area inside a small blue box in Figure 1a, cold surface water
is frequently found northeast of Taiwan and this area is an important upwelling domain (Tang et al., 2000).
Regional Ocean Modeling System (ROMS) (Shchepetkin & McWilliams, 2005) has been successfully used to
simulate the ocean current in the ECS, yielding good agreement with observations (Yang et al., 2012). The
localized upwelling has been successfully reproduced by the model results. Figure 3a shows that there is a
strong upwelling area near the meeting point between the Kuroshio and the shelf break. Therefore, the
numerical output is used to examine the driving mechanism of the upwelling.

The dominating factors at the meeting points can be identified from the meridional momentum equation:

ov 1 0P
— +UW+fU +—— — Dy + Usstr + Upsr =0, (4)
ot —~— =~~~ Do 6)/ ~—~

Vhadw ~ Veor M Vhise

Vaccel Vorsgrd

where U is the vertically averaged horizontal current, V is the vertically averaged meridional velocity, and P is
pressure. In equation (3), the first term is the local acceleration, the second term is the advection term (the
inertial term), the third term is Coriolis term, the fourth term is the pressure gradient, V},yisc is horizontal visc-
osity term, and Uy, and Uy, denote surface stress (surface friction) and bottom stress (bottom friction). As
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Figure 3. Velocity distribution and momentum balance for a cross-shelf transect. (a) Monthly mean vertical velocity (color map, in unit of 103 ms_1) and horizontal
current (vector, in unit of ms ™) at the depth of 100 m in July, overlaid with 50 m, 100 m, and 200 m isobaths; (b and c) the distributions of each term in equation (4)
along a meridional transect (dotted line in Figure 3a) in March and July;(d and e) topography, inertial term, and topographic upwelling (all normalized by their
maximum) along the same transect and time as in Figures 3b and 3c.

shown in Figures 3b and 3¢, most of the cross-shelf flow is geostrophic, that is, the Coriolis term is mainly
balanced by the pressure gradient term. However, near the collision point (the triangle in Figure 3a) the
inertia term associated with the northward flowing Kuroshio becomes one of the dominating terms in the
momentum balance. As shown in Figures 3d and 3e, strong upwelling is closely linked to the strong inertia
of northward flowing Kuroshio when it abruptly meets with the zonally running shelf break.

The vertical velocity above the Ekman layer over a sloping bottom contains two terms (Pedlosky, 1986)
wg = ux-Vhg + {y/ Ev/z, (5)

where uy indicates the horizontal velocity in the ocean interior above the bottom boundary layer, Ey is the
vertical Ekman number, and { represents a variable associated with relative vorticity immediately outside
the Ekman boundary layer. According to the momentum equation balance shown in Figure 3, the last term
in equation (5) is negligible relative to the topography term near a steep shelf break. The vertical velocity
above the bottom Ekman layer is a function of vertical velocity at the upper edge of the bottom Ekman layer
(see zg in Figure 2). For simplicity, we assume that the vertical velocity for the water column between the
Ekman layers on the sea surface and seafloor has a linear profile

w(z) = %UK-VhB, (6)

where H is the thickness of water column, omitting the boundary layers. As shown in the Figure 4, equation (6)
gives a qualitatively reasonable estimation of the w in the water column between the top and bottom Ekman
layers. Thus, we have

Vh
%:ﬂua_p’z >ZE- (7)
oz H fopolun|® 0z

Equation (7) suggests that the intrusion from the strong deep current onto the shelf can lead to a spiral struc-
ture. In general, for large-scale steady flow the ocean is stably stratified, so that dp/0z is negative. Equation (7)
therefore implies three types of vertical structure of horizontal current vectors corresponding to three types
of topography.

In case one, where uy - Vhg = 0, the ocean currents flow along the isobaths of topography; so that there is no
rotation of velocity vector, that is, no Kuroshio intrusion.
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In case two, where uk - Vhg < 0, the bottom water flows down the slope of topography and downwelling
occurs. According to equation (7), 86/06z > 0; thus, the surface part of the Kuroshio is more shoreward than
the subsurface water. As a result, the onshore cross-shelf intrusion of the Kuroshio is mainly confined to
the upper layers.

In case three where uy - Vhg > 0, so that 06/0z < 0. This case represents the situation northeast of Taiwan,
where the Kuroshio continues its northward flow as shown in Figure 2. Due to the sudden change in the
orientation of topography, the current runs almost perpendicular to the isobaths. Within the bottom
Ekman layer, the horizontal current rotates in the form of left-hand spiral (Figure 2) due to bottom friction.
At the upper edge of bottom Ekman layer, the change of uy due to topography induces strong upwelling
according to equation (5). Thus, the horizontal velocity vector above zg is in the form of a left-hand spiral, that
is, the horizontal flow continuously turns anticyclonically with increasing z relative to u,,. As a result, the
Kuroshio subsurface water intrudes farther westward than the Kuroshio surface water, as shown in
Figure 2. In this case, onshore cross-shelf intrusion of the Kuroshio is mainly confined to the deep layers. In
northeast coast area of Taiwan, the characteristic values are the following: dp/0z = 0(0.03 kgm~*),ux-Vhg
= 0(0.005ms™"),y = 0(100 m* kg~ s7"), and |up| = O(1 ms™"). Hence, the angle between the surface and
bottom current vectors is approximately 60°.

The ROMS model output was used to verify this mechanism. The model forced by climatological data (heat
flux, water flux, momentum flux, Changjiang River flux, and 10 tidal components) was run for 6 years for spin-
up. Then, the spin-up ocean state of the climatology run at the sixth model year was used as initial conditions
for float experiments. The model is configured in the same way as in Yang et al. (2012). According to equa-
tion (7), the horizontal flow should be a left-hand spiral. As shown in Figure 4a, at the conjuncture of the
Kuroshio and the continental shelf deep floats trajectories are more shoreward than shallow floats; thus,
the cold water in deep layers should intrude farther shoreward than water in the upper layers. The patterns
of flow trajectory are consistent with the two salty and cold bottom cores inferred from observations shown
in Figure 1, where the temperature of the nearshore core was 1° colder than the offshore core, although the
offshore core was located in water deeper than the nearshore core.

Thus, the observed vertical structure of KBC, OKBC, and NKBC in the ECS can be explained by this mechanism,
as shown in Figure 4a. Furthermore, the horizontal velocity profiles in the surface Ekman layer are different. In
March, it appears as a well-defined right-hand spiral, but in July it appears as a vaguely defined left-hand
spiral. Such a difference is due to the fact that the monsoon reverses its direction from March to July. The ver-
tical turning with depth in the whole water column is composed of three segments: a spiral in the surface
Ekman layer, where the sense of rotation varies with season, a left-hand spiral in the bottom Ekman layer,
and a left-hand topographic beta spiral between these two Ekman layers as shown in the Figures 2 and 4.

Based on the direct output from the model, the monthly mean w at the meeting point in March and July is
plotted in Figures 4c and 4d. Equation (3) can be used to infer the vertical velocity from stratification and the
rotation of the horizontal velocity vector, whose values can be diagnosed from the model output. It is inter-
esting to note that the w profiles calculated from equations (3) and (6) qualitatively agree with model results,
especially in July, as shown in Figure 4d. The angle 6 has been directly calculated from the modeled horizon-
tal current; the beautiful spirals obtained are shown in Figures 4e and 4f. According to the theory, the hori-
zontal flow turns clockwise with increasing z relative to the bottom current. At the depth of 20 m, the
horizontal velocity vector rotates about 60° clockwise relative to the bottom vector. In the surface layer,
the sense of rotation changes obviously from March to July, and this is attributed to the variation of monsoon
winds. Below the surface Ekman layer, the variation in the spiral from March to July comes from the seasonal
variation in the Kuroshio (Wu et al., 2014), which could change the upwelling near the bottom according to
the equation (7). Therefore, the meeting location of the Kuroshio with the shelf break as well as the angle
between the Kuroshio and the topography gradient changes from winter to summer. Thus, the intrusion
branches should likewise spin differently according to the equation (7). Moreover, Figures 4e and 4f show
a good agreement between the equation (7) and model results. Thus, equation (7) provides a convenient
way to estimate the spiral at the meeting point whenever a strong current is not parallel to the isobaths.

According to equation (7), if the northward flowing Kuroshio is more perpendicular to the isobaths, the rota-
tion of the left-hand spiral is stronger. Furthermore, equation (7) shows that the rotation of the ocean current
is inversely proportional to the speed of the current and the Coriolis parameter; thus, topographic beta spiral
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Figure 4. Topographic beta spiral. (a) Float trajectories from numerical experiments of the climatology run from 1 March to
1 September, where the floats were released along a transect (details shown in the insert) on 1 March; (b) the spiral of
the horizontal current; (c and d) profiles of w from model output, calculated from equations (3) and (6) at a meeting
point (the triangle in Figure 4a) in March and July, respectively; and (e and f)  profiles calculated from the modeled
horizontal current, equations (3) and (7) in March and July, respectively.

may be more pronounced for relatively weak current at lower latitudes. On the other hand, the rotation is
proportional to the stratification; in other words, the seasonal variation of the Kuroshio intrusion in the
deep water is partially due to seasonal difference in stratification.

Figure 5 shows that the strongest bottom upwelling occurs northeast of Taiwan, where the cross-stream
onshore intrusion reaches the peak value as high as ~1.2 sverdrup (Sv) (1 Sv = 10° m® s™"). It has been
reported that there is a cross-shelf intrusion of 1.4 Sv originating from the Kuroshio (Isobe, 2008) on the
ECS shelf. Therefore, the intrusion identified here is the most important source of the cross-shelf exchange,
and the topographic beta spiral may be a key dynamical factor regulating the onshore intrusion of the
Kuroshio. According to equation (7), there is onshore/offshore cross-shelf intrusion along the shelf break
wherever the Kuroshio is not parallel to the isobaths. This prediction is clearly demonstrated by the close cor-
relation between intrusion flux and bottom upwelling in Figures 5b and 5c. The wp term can be further sepa-
rated into the cross-stream and along-stream terms (see n and t in Figure 5a for the orientation).

wg = ux'Vhg = up grad(hg),, + ur grad(hg),. (8)

Wen Wt

The stronger intrusion involves a nonlinear topography-induced upwelling. If there is no along-stream topo-
graphy, the gradient term vanishes, wg; = 0; so that there is no upwelling, and no topographic beta spiral;
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consequently, u, = 0, wg, = 0, that is, no onshore intrusion. If there is along-stream topography, flow runs
onto the topography, creating an upwelling wg, > 0. This upwelling induces the topography beta spiral,
and thus an onshore intrusion velocity u, > 0. As a result, there is additional upwelling associated with the
onshore flow. This leads to enhanced topographic spiral and more onshore flow and even stronger
upwelling. In this way, the nonlinear topography-induced upwelling in the relatively confined region of
the Kuroshio Current combined with the basin scale dynamics gives rise to a complicated solution, which
is consistent with both the global and local dynamical balances. It is important to emphasize that the
structure of the topographic spiral and the pathway of the intruded water masses is set not only by the
local dynamics but also the basin-scale dynamics.

The topographic beta spiral described above plays key roles in the coastal environment because it leads to
a strong intrusion onto the continental shelf carrying large amounts of material from the deep water. In
the ECS, the shoreward intruding cold, oxygen-poor, and phosphate-rich deep water sometimes can reach
as far as the Zhoushan fishery ground (a famous fishery ground in Asia and an upwelling area) off the
coasts of Zhejiang (see Figure 1a) (Yang et al,, 2013), where hypoxia, harmful algal blooms, and jellyfish
blooms are frequently reported (Wang & Wu, 2009; Zhou et al., 2008; Zhu et al., 2011). Thus, topographic
beta spiral is a vitally important mechanism involved in the interaction between the open ocean and
coastal ocean.

5. Conclusion

The Kuroshio bifurcation or intrusion has been discussed in many previous studies. Recent in situ observa-
tions and numerical float experiments clearly demonstrated the left-hand spiral structure of the currents
northeast of Taiwan. Our analysis shows that such a left-hand spiral can be explained in simple dynamical lan-
guage as follows.
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In the ocean interior, the essential ingredients of the beta spiral are the stratification and vertical velocity, as
shown in equation (3). Northeast of Taiwan, the strong Kuroshio runs almost perpendicular to the nearly
zonal shelf break; thus, large inertial term induces strong upwelling in the conjunction area. In the stratified
ocean, this topographically induced upwelling gives rise to the topographic beta spiral.

This left-hand spiral leads to the onshore movement of the Kuroshio water in deep layers, which is cold and
rich in phosphate. Thus, the topographic beta spiral is one of the major mechanisms regulating the Kuroshio
intrusion. The contribution associated with the topographic beta spiral to the total transport of the Kuroshio
intrusion and other forms of currents bifurcated from the Kuroshio are an important issue to be explored in
further studies.

The topographic beta spiral may exist in many places in the world oceans wherever a strong current is not
parallel to the isobaths. An important by-product of such topographic spiral is the rotation and bifurcation
of the current or some kind of on-shore intrusion or offshore currents. The topographic beta spiral provides
a dynamical channel to bring the cold, oxygen-poor, and nutrient-rich deep water from the strong current to
the continental shelf. Therefore, the topographic beta spiral reveals a long-term missing link between the
oceanic general circulation theory and shelf dynamic theory, and it is important for understanding the links
between changes in ocean climate, coastal hypoxia, and ecological perturbations.
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