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ABSTRACT

The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a

uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant

volume exchange at zonal open boundaries, this method is competent in removing the components associated

with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the

zonally integrated flow in the IndianOcean basin extended all the way to theAntarctic by virtue of the ECCO

dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian

Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational

flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with pre-

vious studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with

refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern

in the domain. Other options of decomposition are also examined.

1. Introduction

The oceanic general circulation is a complex dynamic

system in the three-dimensional space. To gain physical

insight, some two-dimensional-section views have been

widely used. For example, the meridional overturning

circulation (MOC) in the ocean has been explored for a

long history (e.g., Siedler et al. 2013); in particular, the

corresponding streamfunction has been used as a tool to

visualize and quantify the MOC.

The common practice in defining the MOC stream-

function is as follows. First, the three-dimensional veloc-

ity is zonally integrated to obtain the zonally integrated

velocity field (V, W). Second, the streamfunction is cal-

culated by vertically integrating the zonally integrated

meridional velocity. This method has been successfully

applied to the world oceans with a particular focus in the

Atlantic Ocean (Cabanes et al. 2008; Danabasoglu et al.

2014; Köhl and Stammer 2008; Lumpkin and Speer 2007).

For the Atlantic Ocean (north of 348S and with the

Mediterranean and the Gulf of Mexico included) there

is no open zonal boundary; thus, if we omit the fresh-

water fluxes associated with precipitation/evaporation

and river runoff, the zonally integrated flow is approxi-

mately nondivergent. But for the general cases, there

may be volume flux through the zonal boundaries and

the zonally integrated (V, W) field is no longer non-

divergent; thus, the simple method mentioned above is

no longer valid.

In fact, there is a large volumetric exchange, the

Indonesian Throughflow (ITF), between the Pacific and

Indian Oceans. Thus, the zonally integrated velocity

field in both the Pacific and Indian Ocean is divergent.

Based on the Helmholtz’s decomposition theorem, any

two-dimensional velocity vector V can be decomposed

into an irrotational (divergent or potential) part VF

and a nondivergent (rotational) part VC, corresponding

to a potential function and a streamfunction, respec-

tively. A straightforward vertical integration of the

nondivergent portion VC then leads to the MOCCorresponding author: Lei Han, lei.han@sdu.edu.cn
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streamfunction; with adequate boundary constraints, this

streamfunction can be defined unambiguously, and in-

dependent on whether the integration is started from the

upper or lower boundaries. If the overturning circulation

streamfunction is directly calculated by simple vertical

integration from the original flow field without such de-

composition, the result will be sensitive to the choice of

the vertical boundary where the integration starts.

Derivation of the overturning circulation in many

parts of the world oceans has similar problems. For ex-

ample, the zonally integrated velocity field in the South

Pacific Ocean has a nonzero source term due to the ITF;

the South China Sea has nonzero source term because

of the South China Sea Throughflow. More importantly,

if one wants to study the meridional circulation in

each subbasin in the Southern Ocean, the source term

associated with the Antarctic Circumpolar Current

(ACC) must be handled carefully as well. With a sim-

ilar method, Watterson (2001) obtained a MOC pat-

tern of the Arctic and Atlantic which extends all the

way to the Antarctic by removing the source term due

to ACC at the southern part of the domain. We

develop a different simple numerical method to solve

the problem in the Indian Ocean where the nonzero

source terms involve not only the ACC but also the ITF

based on the more up to date dataset.

In this study, we formulate the velocity decomposition

problem in rigorous terms mathematically. The funda-

mental aspects of decomposition, including discussions

on the nonuniqueness of the solution and the numerical

scheme, are outlined in section 2. The implementation

of the method to the Indian Ocean extended to the

Antarctic with the dynamically consistent ocean state

estimate, Estimating the Circulation and Climate of the

Ocean (ECCO), is discussed in section 3. The derived

MOC patterns and comparison with previous research

are presented in section 4, as well as the discussion on an

alternative option of performing the decomposition.

Conclusions of this paper are summarized in section 5.

2. Method

a. Decomposition of the zonally integrated flow
vector

For an ocean model based on volumetric conserva-

tion, the continuity equation is

›u

›x
1

›y

›y
1

›w

›z
5 0 , (1)

where (u, y, w) denote the three-dimensional velocity

components. Zonally integrating Eq. (1) in a basin

leads to

›

›y

ðxe
xw

y dx1
›

›z

ðxe
xw

w dx5 u
w
(y)2 u

e
(y) , (2)

where xw 5 xw(y) and xe 5 xe(y) are the zonal

boundaries; uw and ue denote the zonal velocity at the

western/eastern boundaries of the model domain.

Denote the zonally integrated flow components as

V(y, z)5

ðxe
xw

y(x, y, z) dx, W(y, z)5

ðxe
xw

w(x, y, z) dx;

(3)

thus, Eq. (2) can be rewritten as

›V

›y
1

›W

›z
5 S(y, z), (4)

where S(y, z) is the divergence term, which can be de-

noted as Syw or Su. As shown in the lhs and rhs of Eq. (2),

S
yw

5 S
y
1 S

w
5

›

›y

ðxe
xw

y dx1
›

›z

ðxe
xw

w dx , (5)

S
u
5 u

w
(y)2 u

e
(y) . (6)

A common practice is to assume that the MOC

streamfunctioncMOC(y, z) satisfies the following relation:

V(y, z)52
›c

MOC
(y, z)

›z
. (7)

Accordingly, the MOC streamfunction can be calcu-

lated by vertically integrating the zonally integrated

meridional flow component V(y, z). However, if the

source term in Eq. (4) is nonzero, the streamfunction

obtained by such a simple vertical integration of the

zonally integrated meridional velocity is not uniquely

defined. In fact, if we start the integration from the up-

per or lower boundaries, streamfunction obtained is not

zero at the end of the vertical integration.As a result, the

corresponding MOC cannot be uniquely defined.

One example of such kind of problem is related to

defining theMOC in the Indian Ocean basin. Due to the

inflow of the ITF at the eastern boundary of the basin,

there is a net meridional volume transports at all lati-

tudes south of the ITF (starting from around 108S). Since
the meridional transport associated with the ITF is

mostly confined to the upper part of the water column, in

the study of the deep cell associated with the MOC,

investigators chose to start the integration from the

lower boundary, trying to minimize the impact of the

ITF on the deep MOC cell (Wang et al. 2014, hereafter

WZWK). However, the impact of the ITF is not entirely

confined to the upper ocean as will be seen in the
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following discussion; thus, such approach may not pro-

vide an accurate description of the MOC cells. In this

paper, we aim to provide a definition of the overturning

circulation streamfunction that is less dependent on the

choice of boundary from which the integration Eq. (7) is

started.

In the general case, the velocity vector of the ocean

circulation can be separated into an irrotational (diver-

gent or potential) part and a nondivergent (rotational)

part according to the Helmholtz decomposition (e.g.,

Arfken and Weber 2005). The Helmholtz decomposi-

tion theorem has been applied in electrodynamics at

first (e.g., Griffiths 2013), and then also widely adopted

in meteorology in decomposing the wind field into rota-

tional and divergent parts for the atmospheric circulation

analysis (e.g., Hawkins and Rosenthal 1965; Sangster

1987; Knutson and Weickmann 1987; Frederiksen and

Frederiksen 1993) and data assimilation research (e.g.,

Barker et al. 2004; Rawlins et al. 2007). The decomposi-

tion method has also been applied in the ocean circula-

tion problems in decomposing the surface currents (Li

et al. 2012), horizontal gyre, the overturning circulation

(Watterson 2001), and ocean heat transport in ECCO

(Forget and Ferreira 2019).

In our case, the zonally integrated, two-dimensional

velocity field V with components as in Eq. (3) is the

targeted vector and can be decomposed as (e.g.,

Watterson 2001; Arfken andWeber 2005; Li et al. 2012)

V5V
F
1V

C
, (8)

where VF and VC represent the irrotational (or diver-

gent) part and the nondivergent (or rotational) part with

the following definitions, respectively,

V
F
5=F , (9)

V
C
5 k3=C , (10)

where scalarsF andC denote the potential function of the

irrotational component and the streamfunction of the

nondivergent component of the original flow vectorV, and

k denotes the unit vector in the (eastward) zonal direction.

In the scalar form, the decomposition of the 2D flow

field (V, W) can be written as

V5V
F
1V

C
, W5W

F
1W

C
, (11)

where

V
F
5

›F

›y
, W

F
5

›F

›z
, (12)

V
C
52

›C

›z
, W

C
5

›C

›y
, (13)

in which VF and WF refer to the irrotational compo-

nents, and VC and WC the nondivergent components of

the flow field (V, W) respectively.

Substituting Eqs. (11)–(13) into Eq. (4) leads to

›2F

›y2
1
›2F

›z2
5 S(y, z). (14)

This is a 2D Poisson equation for the potential function

of the irrotational component. The abovementioned

decomposition can separate the irrotational component

VF from the total meridional transport, and this com-

ponent corresponds to the net zonal inflow at the open

boundaries, Eq. (6). By subtracting VF from the total

flow vector V, one obtains a clean nondivergent VC,

which provides a unambiguous overturning circulation.

b. The nonuniqueness of the decomposition and
boundary conditions

The Helmholtz decomposition into the rotational and

divergent components is unique for infinite domain.

However, for a limited domain, the decomposition is not

unique due to lack of additional physical constraints

on the boundary conditions (BCs) for either of the

decomposed component. This point has been discussed

in both meteorology (Bijlsma et al. 1986) and oceanog-

raphy (Fox-Kemper et al. 2003). The global domain with

periodic domain is free of such problem but additional

assumptions on boundary conditions have to be made if

one wishes to obtain a solution of decomposition for a

problem with presence of boundary of the computa-

tional domain. Many attempts have been made in me-

teorology [see Li et al. (2012) for a list of those studies]

and oceanography (Bryan et al. 1999; Roberts and

Marshall 2000; Watterson 2001) to find the appropriate

additional constraints; these solutions represent choices

of a decomposition, not the decomposition, as elabo-

rated in Fox-Kemper et al. (2003).

We acknowledge the nonuniqueness of theHelmholtz

decomposition in a limited domain, and will work on

obtaining a decomposition with the boundary conditions

consistent with the aim of this paper, that is, to derive an

overturning circulation streamfunction that is indepen-

dent on the boundaries from which the integration

Eq. (7) starts. This requirement leads to the first con-

straint, that is, the net meridional transport of the non-

divergent component across any latitudinal section

vanishes orð0
2H

V
C
(y, z) dz5 0, 0# y#L , (15)

where L denotes the length of the domain in y or me-

ridional direction, and H the depth of the ocean floor,
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which is allowed to be function of y. And the second

constraint is the same as being adopted by Watterson

(2001), that is, the streamfunction C is constant along

wall boundaries, or in another word, the curve along the

wall behaves as a streamline,

Cj
wall

5 const , (16)

The wall boundaries include the ocean floor at bottom

and the sidewalls at both ends of the domain in the

meridional direction. Note that the wall boundaries

come from zonal integration of the ocean domain, thus

depend on the arbitrary choice of the domain of com-

putation (see Fig. 1 for an illustration).

Equations (15) and (16) comprise all the assumptions

we shall make throughout this study. Boundary condi-

tions for the potential functionF and the streamfunction

C will all be derived in the following from these two

assumptions.

With Eqs. (13), (15), and (16), the surface boundary

condition for the streamfunction C can be readily ob-

tained as

Cj
z50

5 const , (17)

which implies that the free surface behaves as a

streamline with the same value as that along the wall

boundary. In another word, the curve of the constant

streamline encloses the whole computational domain

in the latitude–depth plane.

Next will be the boundary conditions for the po-

tential function F. With the nonpenetrating condition

for the original flow field V and Eqs. (8)–(10), we can

obtain

n � =F1 n � (k3=C)5 0, at wall , (18)

where n denotes the normal unit vector of the wall

boundary. Since constant streamfunction is assumed,

the second term in above equation vanishes due to

n � (k3=C)5=C � (n3 k)5=C � l5 ›C

›l
5 0,

with l the tangential unit vector of the wall boundary,

which yields the bottom boundary condition for F as

n � =F5 0, at wall . (19)

At surface, since C keeps constant, the vertical mo-

tion of the rotational part WC vanishes according to

Eq. (13). Thus as per the velocity decomposition in

Eq. (11), the surface boundary condition for F, takes

the form

›F

›z

����
z50

5Wj
z50

. (20)

FIG. 1. (a) Horizontal view of the model domain of the Indian Ocean (green shaded area); the blue segments

indicate the open zonal boundary at the east and the red segments at the west. The domain spans 208–1478E in

longitudes and 708S–268N in latitude. (b) Vertical view of the model domain of the zonally integrated flow (green

shaded area). Both (a) and (b) are generated according to the ECCO data. The yellow dashed lines indicate the

equator. (c) The grid size of LLC in the meridional direction, with Dy as a function of latitude; lines of different

colors correspond to different longitudes within 208–1478E.
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If the model is based on volume conservation (such as

the ECCO product to be introduced in the next section),

Wjz50 in above equation represents the net volume flux

across the sea surface (evaporationminus precipitation).

Therefore, under the two assumptions made previously,

the boundary conditions for bothF andC are complete.

The system of Poisson equation for the potential func-

tion F can be formed as below:

8>>><
>>>:

›2F

›y2
1

›2F

›z2
5 S(y, z) in V ,

›F

›z
j
z50

5Wj
z50

,
›F

›n

����
wall

5 0,

(21)

where V denotes the latitude–depth computational do-

main. Watterson (2001) proposed an efficient iterative

method of eliminating the spurious vorticity at boundary

to solve the Poisson problem of the streamfunctionC in

the limited domain with a standard code of Poisson

solver. The MOC streamfunction of the Atlantic (in-

cluding its Southern Ocean sector) and Arctic were

successfully obtained with his method from a model’s

data. In this paper, we use a different method of incor-

porating the boundary conditions (both surface and

bottom) into the numerical iteration of the interior

points, and solving the finite-differenced equation of the

potential functionF as a whole. The nonuniform grids of

the ECCO data are appropriately transformed to be

uniform with some techniques, taking advantage of the

best performance of the numerical scheme under uni-

form grids. This method is straightforward in physical

meaning and simple to implement. And the details are

explained in the following section.

On the other hand, for a Poisson equation with purely

Neumann BCs as in Eq. (21), there is no solution

unless a compatibility condition is satisfied (e.g., Li et al.

2017), which is

ð
V

S(y, z) dA5

ð
›V

›F

›n
ds , (22)

where ›V denotes the boundary of domainV, dA and ds

the areal element and line element of domain V and

boundary ›V, respectively, and (›F/›n) the outward

normal derivative of F along boundary. With the

boundary conditions of F as shown in Eqs. (21) and

(22) can be rewritten as

ð
V

S(y, z) dy dz5

ðL
0

Wj
z50

dy . (23)

This compatibility condition will be checked in section 4

for the reliability of the numerical solution.

It is also worth mentioning that if the compatibility

condition is satisfied and ›V is smooth, the solution does

exist but it is not unique. Indeed, for any solution F0,

F0 1 C0 (C0 is an arbitrary constant) is also a solution

(e.g., Li et al. 2017). However, our concern in the flow

decomposition problem is limited to the velocity com-

ponent (VF, WF), which are unique, regardless any ad-

ditive constant for F.

c. Numerical solution to the Poisson equation

In general, the two-dimensional Poisson equation [Eq.

(21)] can be solved numerically using the ‘‘successive

over-relaxation iteration’’ (SOR) method, which con-

verges faster than either Jacobi or Gauss–Seidel methods

(e.g., Li et al. 2017). For a uniform 2D mesh, the general

scheme of the SOR method is as follows

Fn
j,k 5 (12v)Fn21

j,k 1
v

4
[Fn

j21,k 1Fn21
j11,k 1Fn

j,k21

1Fn21
j,k11 2 (Dh)2S

j,k
], (24)

where the relaxation parameter v determines the iter-

ations needed for convergence in different setups, and is

usually chosen within the range 1 # v , 2. The super-

scripts n 2 1 and n denote the previous and the current

iterative step, respectively. The subscripts j and k denote

the grid point index in y and z directions of the dis-

cretized mesh, respectively. The term Dh denotes the

uniform grid size in either direction.

With regards to the incorporation of the BCs, it can be

readily seen that Eq. (24) can be modified as the fol-

lowing form with Neumann BCs at all boundaries,

Fn
j,k 5 (12v)Fn21

j,k 1
v

N
j,k

[Fn
j21,kAj21,k

1Fn21
j11,kAj11,k

1Fn21
j,k11Aj,k11

1Tn
j,k21 2 (Dh)2S

j,k
], (25)

where Aj,k denotes the mask matrix recognizing the

numerical grid point as water or nonwater,

A
j,k
5

�
0, if ( j,k) is a nonwater grid

1, if ( j, k) is a water grid
, (26)

and

N
j,k
5A

j21,k
1A

j,k11
1A

j11,k
1A

j,k21
(27)

represents the total number of water grids adjacent to grid

(j, k); theTn
j,k term inEq. (25) is introduced in order to deal

with the nonhomogeneous Neumann BC at the surface,

Tn
j,k 5

(
Fn

j,kAj,k
, k. 1

W
j,k
Dh , k5 1

, (28)
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where Wj,1 5 (Fj,1 2 Fj,2)/Dh 5 Wsurface is the vertical

derivative adjacent to the surface; this surface vertical

velocity represents the volume flux across the sea sur-

face. Abovementioned numerical schemes are all con-

structed based on the Arawaka C grid in consistency

with ECCO.

In this study our testing indicated that v5 1.995 gives

the fastest convergence. The optimal value of v adopted

here is in good agreement with the result of the classical

theory on the iterative methods (Yang and Gobbert

2009). Other options of v can also produce the same

iterative results, but with a slower convergence of

the runs.

Therefore, Eqs. (25)–(28) comprise the numerical

solution system to the 2D Poisson problem, Eq. (21).

The surface BC and the irregular bottom topography is

implicitly implemented through the specification of the

mask matrix. In the following, this method will be ap-

plied in decomposing the flow components for the sake

of deriving a consistent MOC pattern in the Indian

Ocean extended to the Antarctic.

3. Data and implementation

As discussed above, the zonally integrated velocity

field in the Indian Ocean basin extended to the

Antarctic has nonzero source terms due to the ITF

and the ACC, which impedes derivation of a physi-

cally consistent MOC pattern directly from original

flow field. Thus, we apply the method developed in

section 2 to separate those source terms from the

original flow field before deriving the overturning

streamfunction.

The only input variables we need to achieve this goal

is the 3D flow field in the Indian Ocean. The dataset we

rely on is the ECCO state estimate release 4, version 3

(v4r3); this dataset can be interpreted as the result of the

least squares fit of the MITgcm (Adcroft et al. 2004),

with sea ice and mixed layer submodels to aboutO(109)

observational points (Forget et al. 2015; Fukumori et al.

2017). Lagrangemultipliers are used (Thacker and Long

1988) to enforce the model equations in such a way that

basic conservation rules (heat, freshwater, momentum,

energy, etc.) are satisfied globally and locally for the

period of January 1992–December 2015. In the hori-

zontal directions, ECCO v4r3 adopts a nonuniform

LLC90 (latitude–longitude–cap) gridding system, which

maps the earth using five faces including an Arctic

face and four mostly latitude–longitude sectors, with

a nominal resolution of 18. In the vertical direction,

ECCO has rescaled height coordinates with 50 vertical

levels and partial cell representation of bottom topog-

raphy (Campin et al. 2008). More information on ECCO

is available in Forget et al. (2015) and on the website

ecco.jpl.nasa.gov.

In extracting the flow field for the Indian Ocean, the

ECCO dataset provides the basin mask. To accommo-

date with our application, we slightly modify its open

boundary at the ITF by moving it 88 west in order to

turn the meridional throughflow via Lombok strait to be

incorporated into the zonal mainstream of the ITF

(Fig. 1a). With this treatment, all the sources of flow di-

vergence as inEq. (4) reside in the zonal inflow/outflow at

the open boundary. The domainwe choose for computing

the streamfunction of the MOC in the Indian Ocean is

illustrated in Fig. 1. This domain spans 208–1478E in

longitude and 708S–268N in latitude, and it involves three

faces (faces 1, 2, and 4) in the LLC gridding system in-

troduced in ECCO v4 (Forget et al. 2015).

In previous studies, the southern boundary of the

Indian Ocean is often posed around 348S to exclude

the impact of the strong zonal flow, the ACC (e.g., Lee

and Marotzke 1998, hereafter LM; WZWK). However,

such a southern boundary requires additional informa-

tion about the irrotational flow component VF at this

open meridional boundary when solving the Poisson

equation, Eq. (21). It is clear that such a boundary

condition is not available. To overcome this problem, we

set the model domain as the whole Indian Ocean, in-

cluding the sector of the Southern Ocean all the way

south to the Antarctic Continent. Regarding the time

resolution of the ECCO product, we adopt the monthly

mean data, which include a total of 288 snapshots from

1992 to 2015 for each time-dependent variable.

The grid size of LLC in meridional direction Dy is

not only nonuniform in latitude, but also varies from

longitude to longitude, which is illustrated in Fig. 1c.

However, within the latitudinal range of our computa-

tional domain, that is, 708S–268N (Fig. 1b), Dy does not

change with longitude (Fig. 1c). This facilitates the op-

eration of zonally integrating the flow field along certain

longitude, which yields (V, W) with Eq. (3). This is the

targeted flow vectorV that we shall decompose with the

method introduced in section 2. It is worth mentioning

that the flow vector adopted in this paper refers to the

Eulerian velocity; thus, the bolus velocity which is a

parameterization of the mesoscale eddies (Gent and

McWilliams 1990) is not included in our MOC compu-

tation though it is available in ECCO. As a result, the

MOC derived in this paper is a Eulerian one. Regarding

the surface boundary condition in Eq. (20), the fresh-

water flux across the sea surface (evaporation minus

precipitation) available as a standard ECCO diagnostic

is applied in our calculations.

Before solving the Poisson equation [Eq. (21)],

the source term S should be calculated. As an example,
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we randomly pick one month (January 1997) and plot

the corresponding terms associated with the diver-

gences ofV andW. Figure 2 shows that Sy and Sw cancel

each other very well at most latitudes, except in the

latitude bands of the open zonal boundaries, ITF

(around 208–108S as can be seen from Fig. 1a) and ACC

(south of 348S), which simply indicates the nonzero

volume exchange across the open boundary. The

other conclusion that can be drawn from Fig. 2 is that

the feature of Syw in ACC below 100m is mainly at-

tributed to Sy.

Figure 3 compares Syw and Su, which shows that these

two terms are almost equivalent to each other over the

whole domain, with a root-mean-square (RMS) as small

asO(1024) m s21, two orders of magnitude smaller than

Syw or Su per se. The nearly identical outcomes produced

by two independent methods verify a reliable source

term and reflect the outstanding conservation property

of the ECCO product as well to a large extent.

Another technical issue with the latitude/depth

grids of ECCO is that it is nonuniform in both direc-

tions while all the tests and discussions in section 2 are

performed with uniform grids. Even though a SOR

scheme for nonuniform grids can be developed, the

problem associated with the huge width-to-height

aspect ratio, that is, Dy/Dz 5 O(103)–O(104) in the

original ECCO data, makes the iterative process infi-

nitely long and the iterative performance substantially

degraded in practical application. This issue is con-

firmed in an idealized numerical test (not shown here).

To overcome this problem, we propose a workaround

with the following steps:

1) Interpolate the source term from the original

nonuniform ECCO grid to a new set of grid that

is uniform in each direction, 10 km in the y di-

rection and 10m in the z direction for example.

The interpolation method must be integral pre-

serving so that the domain integral of the source

term is kept unchanged before and after the

interpolation.

2) Rescale the meridional grid with a factor of d 5
1/1000. In this way, both the meridional coordinate

and the meridional velocity is rescaled with the

same factor of d; in this new meridional coordinate,

y*5 dy and V*5 dV; thus this rescale leaves the

divergence contribution due to the meridional ve-

locity Sy unchanged.

The model domain is now covered by a new computa-

tional mesh with square grids of 10m 3 10m. Thus the

Poisson equation for the potential functionF* under the

transformed coordinate satisfies

›V
F

›y
1
›W

F

›z
5
›2F*

›y*2
1

›2F*

›z2
. (29)

To summarize the procedure above, the nonsquare

mesh problem can be overcome by transforming to the

square mesh (Dy*5Dz). The new set of the Poisson

equation bears the same form as the original one,

FIG. 2. The divergence terms for the upper 1000m in January 1997. (a) The horizontal divergence term Sy; (b) the

vertical divergence term Sw, and (c) the sum of them, i.e., the total divergence field Syw. The vertical coordinate is

stretched in order to clearly show the strong source/sink in the upper ocean.
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Eq. (21), except with F and y being replaced by F* and

y* and that the way of recovering the meridional flow

component now becomes

V
F
5

1

d

›F*

›y*
, or V

F
5

1

d2
›F*

›y
. (30)

With regards to the computational domain for our

Indian Ocean case, as being pointed out earlier in this

section, both meridional borders are placed in land with

y*5 0 corresponding to 708S and y*5L corresponding

to 268N; the choice of the vertical boundaries are rather

straightforward with z5 0 at the surface and z52H(y)

at the ocean floor.

Now that the nonuniform grids can be transformed as

square with above steps, the SOR scheme for square

grid, Eq. (24), can be applied directly to the ECCO data

with no necessity of developing a nonuniform version of

the iterative scheme.

With the procedures discussed above, the set of

equations, Eq. (21), can be solved numerically by the

modified SOR iterative method for a limited domain

with the ECCO data to yield an irrotational component

(VF,WF) in the domain of the IndianOcean extended to

the Antarctic indicated by Fig. 1a. The stopping crite-

rion for the numerical iterative process chosen for this

case is the RMS difference of F* between two consec-

utive iterative steps is less than 1028. The solution and

further results on the cells of MOC in the Indian Ocean

extended to theAntarctic are presented and discussed in

the next section.

4. Results

a. The Eulerian MOC of the Indian Ocean

Immediately after the irrotational component (VF,

WF) is derived by solving the Poisson problem in

section 3, the nondivergent component (VC,WC) can be

derived by subtracting it from the total flow (V, W) as

per the decomposition in Eq. (11). As assumed in

Eq. (15), the vertical integration of VC(y, z), that is,

the net meridional transport by the nondivergent flow

component, must vanish at all latitudes. However,

the numerical algorithms in our flow-decomposition

method unavoidably introduce errors which make the

net meridional transport byVC(y, z) deviate from zero.

In this sense, the net meridional transport by VC(y, z),

Mnet
C (y)5

ð0
2H(y)

V
C
(y, z) dz, (31)

may serve as a measure of the decomposition error. The

net meridional volume transports for the total flow V,

the irrotational component VF, and the nondivergent

component VC are plotted in Fig. 4 for January 1997

(Fig. 4a) and July 2010 (Fig. 4b), two randomly picked

snapshots from the ECCO time series for demonstration.

FIG. 3. The source terms in January 1997. (a) The divergence of the zonally integrated flow Syw in Eq. (5).

(b) The difference of the zonal flow component at the western and eastern boundaries of the domain, Su in

Eq. (6). (c) The difference between these two terms, i.e., Syw 2 Su. Note the color scale in (c) is two orders of

magnitude smaller than in (a) or (b). The vertical coordinate is stretched toward the surface to better illustrate

the upper levels.
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One can find that the net transports byV andVF are very

close to each other, and the corresponding error Mnet
C (y)

is twoorders ofmagnitudes smaller than themagnitudeof

net transports by V and VF at all latitudes. The RMS

values ofMnet
C (y) for the two cases in Fig. 4 are 0.100 and

0.113Sv (1Sv[ 106m3 s21), respectively. The low level of

the decomposition error justifies the effectiveness of our

separating algorithm.

Another way to assess the effectiveness of the de-

composition is through the divergence and curl fields of

the decomposed nondivergent and irrotational compo-

nents. Using a randomly selected month (January 1997)

from ECCO as an example, the divergences and curls of

the three flow fields are plotted in Fig. 5, respectively. It

is evident that virtually all the divergences of the origi-

nal flow field are taken by its divergent or irrotational

part, leaving the nondivergent or rotational part well

divergence-free; and the curls of the original flow field

are taken almost all by its nondivergent or rotational

part, leaving the divergent or irrotational part well curl-

free. Using the root-mean-square value as the measure,

the divergent part and the rotational part account for

around 98.8% of the divergence and 99.8% of the curl of

the original flow field, respectively. Thus, our decom-

position method has done a fair job in obtaining the

nondivergent and irrotational components of the origi-

nal flow field.

The flow decomposition is to obtain a physically

consistent pattern of the Eulerian MOC, which is the

aim of this paper. As a common practice, the stream-

function of the MOC is derived by vertically integrating

the meridional flow component accumulatively in the

vertical direction either upward or downward by as-

suming zero streamfunction at starting point, with the

following forms consistent with Eq. (7):

c
up
MOC(y, z)52

ðz
2H

V(y, z0) dz0, (32)

cdown
MOC(y, z)5

ð0
z

V(y, z0) dz0, (33)

where c
up
MOC and cdown

MOC refer to the upward and down-

ward integration, respectively.

To demonstrate the effect of the flow decomposition

on the patterns of MOC, we calculate the stream-

functions with both Eqs. (32) and (33) for the total

meridional component V, its irrotational part VF, and

nondivergent part VC, respectively. These stream-

functions are named c(V), c(VF), and c(VC) and are

demonstrated for January 1997 (Fig. 6) and July 2010

(Fig. 7). One can see that the integration directly with

the total meridional component c(V) (Fig. 6 and Fig. 7,

upper row), cannot provide a consistent MOC pattern

in the domain with MOC cells strongly depending on

the direction or starting point of the integration, in

both the ACC and the ITF regions where significant

zonal inflow/outflow occurs. Nevertheless, if the irro-

tational part c(VF) (Fig. 6 and Fig. 7, middle row) that

accounts for the zonal flow impact is removed from the

total, yielding the nondivergent part c(VC) (Fig. 6 and

Fig. 7, bottom row), the patterns of the Eulerian MOC

become consistent between the two ways of integra-

tion. In July (Fig. 7), twoMOC cells are well defined by

the nondivergent streamfunction c(VC): a clockwise

FIG. 4. Net meridional volume transport (Sv) in the Indian Ocean extended to the Antarctic

for the total transport (blue solid), the divergent component (red dashed), and their residual or

the rotational component (yellow solid) for (a) January 1997 and (b) July 2010. Themean value

and standard deviation of the residuals in the plots are 20.041 and 0.100 Sv in (a) and 20.063

and 0.113 Sv in (b), respectively.
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cell (positive streamfunction) in the ACC region above

500m and a large-scale counterclockwise cell (negative

streamfunction) prevails in the whole depth of the rest

of the basin, with a significant part existing in the

Indian Ocean basin (north of 308S). While in January

(Fig. 6), a new clockwise cell is witnessed in the

northern area and becomes the dominant MOC cell in

the Indian Ocean. The MOC pattern looks rather

FIG. 6. The streamfunction (Sv) in January 1997 obtained by integrating either (left) downward from the surface

(cdown) or (right) upward from the bottom (cup) in the Indian Ocean extended to the Antarctic. The stream-

functions obtained by integrating the total meridional flow component, the decomposed irrotational component,

and the decomposed nondivergent component, are named (top) c(V), (middle) c(VF), and (bottom) c(VC), re-

spectively. The zero contour line is drawn in white. The vertical coordinate is stretched toward the surface to better

illustrate the upper levels.

FIG. 5. The (left) divergences (s21) and (right) curls (s21; only the upper levels are shown since there is little

information below) of the (top) original flow field, (middle) irrotational or divergent component, and (bottom)

nondivergent or rotational component with the sample data of January 1997 from ECCO.
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stable throughout the year in the ACC region, while it

exhibits notable seasonal variability in the Indian Ocean.

Though the results of only two snapshots were dem-

onstrated above, they are representative among the total

288 monthly fields of ECCO v4r3 from January 1992 to

December 2015. For an overview of the effectiveness of

the method throughout the ECCO’s time series, the

mean value and standard deviation of the error indicator

Mnet
C (y) for each month are presented in Fig. 8a, with the

two vertical dashed lines indicating January 1997 and

July 2010, whose MOC patterns have been illustrated

previously in Figs. 6 and 7. The errors, mostly within

0.1 Sv with a standard deviation of around 0.1 Sv, show

negligibly small values overall, compared with the

much larger net transport of the total flow, whose RMS

reaches around 30–40 Sv. This uniformly small value

of Mnet
C (y) also proves that the previous assumption,

Eq. (15), is kept valid in solving the problem. And the

well constrained residual transport warrants the deri-

vation of a physically consistent MOC streamfunction.

On the other hand, the compatibility condition of the

existence of solution for the Poisson problem men-

tioned in section 2, Eq. (23), is also checked, with result

shown in Fig. 8b. It is apparent that the areal integral of

the source term [lhs of Eq. (23)] and the line integral

of the zonally integrated vertical velocity at surface [rhs

of Eq. (23)] well equate with each other throughout the

time series of the ECCO data, with an RMS difference

as small as 1.5 3 1024 Sv. The balance of these two

terms implies that the rate of change of the oceanic

volume in the domain of interest (Fig. 1a) is entirely

due to the volume exchange at open boundaries in

zonal. And the satisfaction of this existence condition

warrants the credibility of the solution derived in this

section.

Previous research on the pattern of the MOC cells in

the Indian Ocean were mostly confined to the south of

ACC, or south of around 348S to exclude the influence of
the strong zonal volume exchange (LM; Ferron and

Marotzke 2003, hereafter FM; WZWK). However, the

influence of the ITF still remains in the domain. To

better compare with those results, we also narrow the

region to the same domain and present climatological

streamfunctions of the MOC for January (Fig. 9) and

July (Fig. 10). The area between the vertical yellow lines

indicate the latitudinal range of ITF at the eastern

boundary of the basin. In fact, the ITF enters the Indian

Ocean from the eastern boundary, with a big por-

tion joining the South Equatorial Current and flowing

southward after reaching the western part of the Indian

Ocean basin (WZWK). As a result, the pattern of c(V)

is very similar to that of c(VC) north of the ITF entry in

both months. However, notable differences do emerge

within and south of the ITF entry, especially near the

surface, manifesting the impact of the ITF and its

down stream.

The climatological pattern of the Indian Ocean MOC

in January and July is also shown by WZWK (their

Fig. 1) and LM (their Fig. 20); their figures exhibit a

similar overall pattern and value of the MOC as our

results in Figs. 9 and 10. The details of the MOC show

better similarity north of the ITF than south since there

FIG. 7. As in Fig. 6, but for July 2010.
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is less zonal flow impact in the north [the volume

transport of the Malacca Strait is only an order of

magnitude of 0.1 Sv, according to SODA and ROMS

(Daryabor et al. 2015)]. But when it enters the ITF

region, some differences do occur. For the January case,

the counterclockwise cell in WZWK is limited to a

rather shallow depth north of 208S; the same cell of LM

does reach 500m similar to our result, but it failed to

FIG. 9. The January climatological mean (1992–2015)MOC in the IndianOcean. The streamfunction obtained by

integrating the meridional flow component upward from bottom, based on (a) the total meridional flow component

V, (b) the irrotational meridional flow component VF, and (c) the nondivergent meridional flow component VC.

(d) The zonal velocity component (m s21) along the eastern boundary of the domainwith positive values (eastward)

marked in dashed contours. The vertical solid lines in yellow mark the region of zonal flow of the ITF. The zero

contour line is drawn in white.

FIG. 8. (a) The mean value (solid curve) and standard deviation (shaded) of the net me-

ridional volume transportMnet
C (y) for all the monthly data of ECCO v4r3 (Sv). The two dashed

vertical lines indicate January 1997 and July 2010, respectively, whose results are demonstrated

in Figs. 4, 6, and 7. (b) The area integral of the source term [lhs of Eq. (23); red solid curve] and

the line integral of the zonally integrated vertical velocity at surface [rhs of Eq. (23); green

dots]. The RMS difference of the two terms is 1.5 3 1024 Sv only, which guarantees the exis-

tence of a solution for the Poisson’s problem.
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extend downward all the way to the bottom as our and

WZWK’s results show. For the July case, our and LM’s

results are both dominated by a widespread counter-

clockwise cell in the basin, while in that of WZWK, a

strong clockwise cell prevails in the whole water column

between 348 and 208S. Such a pattern is quite similar to

the streamfunction integrated by the total flow compo-

nent V in our Fig. 10a. Actually, the ITF’s influence on

the pattern of the MOC was realized by WZWK who

tried to minimize it by integrating ‘‘the mass stream-

function from the ocean bottom upward such that ITF’s

influence is confined within the upper ocean since most

of the ITF transport is present in the upper around

400m.’’ But even so, the ITF’s influence on the MOC is

still remarkable as seen in above comparisons. From

Figs. 9b and 10b, one can find the ITF influence as a

source term is not limited within the upper layers,

but can reach several thousand meters deep, especially

in boreal summer. In fact, notable eastward volume

transport exists at depths underneath the westward

mainstream of the ITF at the eastern entrance of the

domain according to ECCO (Figs. 9d and 10d). The

eastward transport below 400m is estimated to be

around 15%–32% of the total flux of the westward

transport for various seasons.

FM worked out an annual mean MOC in the Indian

Ocean from a 4D-variational assimilation of WOCE

hydrography in the year 1995 (their Fig. 6b). When it is

compared with the decomposed annual mean MOC of

the same year by our method based on the ECCO data

(Fig. 11), one finds that the overall pattern of the

anticlockwise cells is rather similar, with a surface cell of

10 Sv (FM) and 16Sv (this study) and a deep cell of 18 Sv

(FM) and 14 Sv (this study), respectively. However, a

clockwise cell above 500m around 308S remains in FM.

It resembles the pattern of MOC derived without de-

composition (Fig. 11b) reflecting the impact of ITF that

is supposed to be removed from the MOC. It is also

worth noting that the annual mean MOC without

FIG. 10. As in Fig. 9, but for July.

FIG. 11. As in Fig. 9, but for annual mean of the year 1995 and

only MOCs from (a) the total meridional flow component V and

(b) the nondivergent meridional flow component VC are shown.
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decomposition (Fig. 11a) produces too weak deep cell of

only 4 Sv. This result throws some doubts on the attempt

of isolating the impact of ITF on the deep cells by in-

tegrating the MOC streamfunction upward from the

bottom (WZWK).

In summary, in our results, a Eulerian MOC can be

clearly identified thanks to the rather clean removal of the

ITF’s influence with a physically meaningful method.

b. On the alternative option of flow decomposition

Besides solving the Poisson equation of the potential

function F, the flow decomposition could also be

achieved by solving the Poisson equation of the stream-

function of the nondivergent component. Actually, the

system of the Poisson equations for the streamfunctionC
can be readily formed as below with its BCs set as in the

previous section, Eqs. (16) and (17),

8><
>:
›2C

›y2
1

›2C

›z2
5 curl(V,W) in V ,

Cj
z50

5 0, Cj
wall

5 0.

(34)

Note that the source term ofC’s Poisson equation is the

curl of the original flow field instead of the divergence as

inF’s equation. In the application ofmeteorology, it was

stated that the decompositions by solving F or C are

equivalent (Li et al. 2012). To further verify the results

from our method, we have explored the possibility of

performing the decomposition by virtue ofC’s equation

as well, and obtained a clean enough decomposition of

two parts, with virtually 100% of the divergence taken

by the divergent or irrotational part and over 99.9% of

the curl taken by the nondivergent or rotational part.

However, the C method is found producing artificial

vertical flow components in WF and WC, and the mag-

nitudes of both terms are even notably larger than the

original vertical component, W itself. Such large errors

are related with the large aspect ratio of the computa-

tional grid of SOR iterations because the coordinate

stretching transformation is not applicable to the C
method. Due to the length limit, the details of this

problem will not be discussed in this paper.

5. Summary and conclusions

The source terms due to exchange through the open

zonal boundary impedes the derivation of a physi-

cally consistent overturning circulation pattern from the

original flow field directly. In an attempt to solve this

problem and obtain the streamfunction of the over-

turning circulation free of such influence, we decompose

the laterally (zonally for the meridional overturning

circulation) integrated flow vector V to an irrotational

(divergent or potential) vector field VF and a non-

divergent (sinusoidal or rotational) vector field VC as

per theHelmholtz’s decomposition theorem. It is known

the Helmholtz decomposition is not unique for a limited

domain, and additional constraints must be imposed on

the boundary to select a solution of decomposition.

Compatible with the goal of this paper, two reasonable

constraints have been proposed to provide boundary

conditions at ocean floor and free surface. The first one

is constant streamfunction along the wall boundary, and

the second one is the vanished net meridional transport

across any vertical section for the rotational (non-

divergent) flow field. The first constraint is a commonly

adopted one, while the second is necessary for the existing

of an overturning circulation streamfunction with no de-

pendence on the starting point of the vertical integration.

A modified successive overrelaxation (SOR) scheme

has been developed to solve the set of the Poisson

equation for the potential function in the limited do-

main, with the competence in resolving the boundary

conditions at both the surface and the ocean floor with

irregular topography. The numerical algorithm we de-

veloped is straightforward and simple to implement.

This modified SOR method was applied to the Indian

Ocean, which is extended to the Antarctic. The ECCO

product (v4r3), a dynamically consistent ocean state es-

timate dataset based on MITgcm, has been used for this

study because of its outstanding conservation property.

The nondivergent flow fieldVCwas derived by solving

the Poisson equation of the potential function. It was

demonstrated that the streamfunctions integrated with

VC could provide an unambiguous pattern of the

Eulerian MOC cells in the domain of study under the

settings of the problem, reflecting very little depen-

dence on the direction/beginning of the integration in

the vertical. These satisfactory results stem from the

near-perfect cancelling of the net meridional volume

transports betweenV andVF, which gives rise to close-

to-zero net transports by VC at all latitudes, and the

fairly clean separation of the divergence and curl of the

original flow into the irrotational and nondivergent

parts, respectively. The alternative way of performing

the decomposition by directly solving the Poisson

equation of the streamfunctionCwas also investigated.

It was found that such an approach can lead to artificial

vertical velocity of large amplitude in both of the de-

composed parts in the interior of the domain, and such

artificial velocity would produce a misleading MOC

pattern. As a result, although the C method and the F
method might be equivalent in decomposition for

square or near-square grids (such as in the case of the

horizontal flow field), they are not for data with a large

aspect ratio (such as in the MOC case of this paper).
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Compared with that derived by the conventional way

of directly integrating the total meridional flow V,

the Eulerian MOC derived by VC sees notable im-

provements, especially in zones with strong normal

flows at zonal boundary. TheMOC in the Indian Ocean

basin exhibits significant seasonal variability, qualita-

tively consistent with previous researches but different

in details, especially in the zones downstream the ITF.

The results also show that the pattern of the deep cells

in the Indian Ocean might still be influenced by the ITF

even though this inflow is concentrated to the upper

levels when entering from the east.

The error of the flow decomposition method, mea-

sured by the net meridional volume transport of the

nondivergent component, was shown to be negligibly

small overall, which warrants the derivation of a physi-

cally consistent MOC streamfunction.

We conclude that themethod developed in this paper

can provide a physically meaningful streamfunction

and more consistent pattern of the overturning cir-

culation than the direct integration of the total me-

ridional flow, especially for a domain with sizeable

inflow at the lateral boundaries. This decomposition

method is compatible with realistic bottom topogra-

phy. However, there is also limitation with this method:

the domain must have a closed boundary (wall or land)

at both ends of the meridional direction because nei-

ther of the decomposed components is available at the

open boundary.

With the approach developed in this paper, the

characteristics of the MOC cells, such as their seasonal,

interannual, and longer timescale variability, can be

investigated. This approach can be applied in studying

the overturning circulation in other basins in future. It

is also worth mentioning that this method is also ap-

plicable to the zonal overturning circulation (ZOC)

discussed by Watterson (2001) and Tan et al. (2015).
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