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ABSTRACT

Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300m) since the 1950s are

examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian

Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between

OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is

primarily driven by thermocline fluctuations. The spatial pattern of the leadingmode of decadal IndianOcean

OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO),

emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further

analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean.

IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Con-

tinent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-

driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies

conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a

linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses.

This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic

connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These

findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary

conditions applied only over the Pacific and Indian Oceans, respectively.

1. Introduction

Recent work has demonstrated the important role of

the Indian Ocean in modulating global climate vari-

ability (SanchezGomez et al. 2008; Schott et al. 2009;

Luo et al. 2012) and regional rainfall (Ashok et al. 2001;

Ummenhofer et al. 2009). In particular, the role of

upper-ocean heat content (OHC) in the Indian Ocean

has been highlighted in recent discussions of the so-called

global warming hiatus (Lee et al. 2015; Nieves et al.

2015). Several studies have linked the hiatus of the

global-mean surface warming during the early 2000s to

the heat redistribution in the upper 700m of the Pacific

and Indian Oceans (Liu et al. 2016). Although heat

uptake in the Pacific Ocean increased during the hiatus,

the OHC in the Pacific upper layer has decreased

(Meehl et al. 2011; Balmaseda et al. 2013a). Strength-

ened easterly trade winds associated with a series of

long-lasting LaNiña events (England et al. 2014) resulted
in an anomalously strong Pacific–Indian Ocean pres-

sure gradient, contributing to an increase in Indonesian
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Throughflow (ITF) heat transport (Lee et al. 2015).

Through this increased ITF heat transport, cooling in

the top 100m of the Pacific Ocean was mainly com-

pensated by warming in the subsurface Indian Ocean

(100–300m) post 2000 (Nieves et al. 2015). Observations

suggest that the rapid increase in Indian Ocean OHC

accounted for more than 70% of the global ocean heat

gain in the upper 700m during 2003–12 (Lee et al. 2015).

In addition to OHC redistribution in the Indo-Pacific

region, subsurface OHC is important to climate vari-

ability, both as a background state for the sea surface

temperature (SST) and as an important factor in the

development of Indian Ocean dipole events (Shinoda

et al. 2004; Annamalai et al. 2005). Noting a high cor-

relation between thermocline depth and SST in the

southwestern tropical Indian Ocean, Xie et al. (2002)

proposed that subsurface ocean dynamics can impact

the SST variability in the southwestern tropical Indian

Ocean and alter the state of the overlying atmosphere.

Therefore, subsurface variability in the Indian Ocean is

increasingly being recognized as an important factor in

the climate system.

While the tropical Indian Ocean SST has exhibited

faster warming since the 1950s than the tropical Atlantic

or Pacific (Han et al. 2014), the subsurface tropical In-

dian Ocean has displayed a prominent cooling trend

from the 1960s through the 1990s (Han et al. 2006; Alory

et al. 2007). Surface warming has been primarily trapped

above the 208C isotherm in the tropical Indian Ocean

from 158S to 58N, whereas a strong subsurface cooling

trend has been observed within the tropical thermocline

between 100- and 300-m depth north of 208S. Previous
studies have suggested various candidates as the drivers

for this observed multidecadal cooling trend in the

subsurface Indian Ocean. Han et al. (2006) proposed

that the upper-thermocline cooling trend was primarily

caused by local wind forcing that resulted in an en-

hancement of upward Ekman pumping. The increase in

upward Ekman pumping velocities shoals the thermo-

cline, inducing the cooling trend in the subsurface. By

contrast, others suggested that the cooling in the

southern Indian Ocean resulted from changes in the

strength of the Pacific trade winds (Alory et al. 2007;

Schwarzkopf and Böning 2011). Thermocline depth

anomalies in the equatorial Pacific induced by changes

in the trade winds are transmitted to the southern Indian

Ocean via the Indonesian region in the form of baro-

clinic waves or ITF heat transport. Schwarzkopf and

Böning (2011) reproduced the subsurface cooling trends

in the Indian Ocean by applying observed wind forcing

to the Pacific Ocean alone in an ocean general circula-

tion model (OGCM), suggesting that remote forcing in

the Pacific is an important contributor to low-frequency

variations in the subsurface Indian Ocean. Zhou et al.

(2017) further investigated contributions of local and

remote forcing from the Pacific to the Indian Ocean by

opening and closing the Indonesian passages in an

OGCM. They suggested that the Pacific exerts large

influence on subsurface variations in the Indian Ocean

via oceanic baroclinic Rossby waves.

It is well known that Pacific Ocean variability modu-

lates IndianOcean conditions on interannual time scales

(Du et al. 2009; Xie et al. 2009). El Niño–Southern
Oscillation (ENSO), the most prominent interannual

mode of climate variability, influences the Indian Ocean

via both the Walker circulation (Klein et al. 1999;

Alexander et al. 2002; Rao et al. 2002) and westward-

propagating oceanic Rossby waves (Cai et al. 2005; Shi

et al. 2007; Cai et al. 2008). The ascending branch of the

Walker circulation shifts eastward during El Niño
events, resulting in anomalous easterlies over the east-

ern Indian Ocean. These easterly anomalies influence

latent heat fluxes and thermocline depths in the eastern

Indian Ocean. In the paradigm of the oceanic connec-

tion, westward-propagating Rossby waves generated by

zonal wind anomalies over the Pacific Ocean become

coastally trapped waves at the intersection of New

Guinea and the equator. These waves then propagate

poleward along the western coast of Australia and ra-

diate into the southern Indian Ocean (Li and Clarke

2004; Wijffels and Meyers 2004). The ITF, which con-

nects the Pacific Ocean to the Indian Ocean, delivers

large amounts of heat from the western Pacific to the

eastern Indian Ocean. Variations in the ITF can thus

change the thermal properties of the upper layer of the

Indian Ocean (Godfrey 1996; Zhou et al. 2008). How-

ever, the relative influence of atmospheric and oceanic

pathways from the Pacific Ocean to the Indian Ocean

remains uncertain, particularly on decadal time scales.

Furthermore, the eastern and western Indian Ocean

are known to be forced by different mechanisms on in-

terannual time scales (Klein et al. 1999;Murtugudde and

Busalacchi 1999). The net heat flux, which responds

primarily to changes in cloud cover and surface latent

heat flux, is the primary factor in SST variations in the

eastern Indian Ocean during ENSO events. However,

correlations between heat flux anomalies and SST ten-

dencies are weak in the western Indian Ocean, sug-

gesting that oceanic mechanisms are the primary

contributors to SST variability in that part of the basin

(Klein et al. 1999). Xie et al. (2002) identified a key

ocean dynamic process in the western Indian Ocean

where wind stress curl associated with anomalous east-

erlies induces downwelling Rossby waves on in-

terannual time scales. However, it is still unclear

whether the drivers of the variability on decadal time
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scales are distinct between the eastern and western parts

of the tropical IndianOcean. Previous studies of decadal

variability have typically treated the tropical Indian

Ocean as a whole (Han et al. 2006; Trenary and Han

2008; Dong et al. 2016) and focus on the zonal-mean

trend in the IndianOcean, despite anomalies of opposite

sign in the eastern and western parts being reported in

some studies (Vargas-Hernandez et al. 2015). Indeed,

performing a set of sensitivity experiments in a regional

ocean model, Trenary and Han (2013) suggested that

thermocline variations are largely determined by wind

stress curl imposed on the western Indian Ocean, while

the ITF dominates variability in the eastern Indian

Ocean after the1990s. Therefore, unlike previous stud-

ies that primarily focused on the zonal-mean trends,

here we suggest the existence of distinct mechanisms for

OHC variations in the eastern and western Indian

Ocean on decadal time scales. We synthesize observa-

tions, theoretical considerations, and output from a

high-resolution OGCM to elaborate on how the Pacific

Ocean impacts OHC in the southern tropical Indian

Ocean through oceanic and atmospheric pathways.

The interdecadal Pacific oscillation (IPO), defined as

the leading empirical orthogonal function (EOF) mode

of low-pass-filtered SST anomalies over the Pacific

Ocean, is the dominant mode of variability in the Pacific

on decadal time scales (Meehl and Arblaster 2002). The

IPO is highly correlated with the Pacific decadal oscil-

lation (PDO; Mantua et al. 1997), with some studies

suggesting that the PDO should be regarded as an ex-

pression of the IPO in the North Pacific (Folland et al.

2002). However, the IPO and PDO are not identical, as

there are notable differences in their spatial distribu-

tions. The northern and southern centers of activity have

roughly comparable amplitudes in the IPO pattern,

while the northern signal is preeminent in the PDO

pattern (Newman et al. 2016). Lead–lag correlations of

sea surface height anomalies (SSHA) in the Indo–Pacific

Ocean region from Simple Ocean Data Assimilation

products against the IPO index suggest a meridionally

asymmetric dynamical connection between the western

Pacific Ocean and the southern tropical Indian Ocean,

whereby signals from the Pacific propagate into the In-

dian Ocean through the Indonesian Seas (Vargas-

Hernandez et al. 2014).

Noting that most previous studies focus on long-term

trends in the Indian Ocean from the early 1960s to late

1990s with the available dataset ending in the early 2000s

(Han et al. 2006; Alory et al. 2007; Han et al. 2014), it is

therefore timely to investigate the decadal variability

based on more up-to-date datasets. We will focus par-

ticularly on assessing the processes through which the

Pacific influences the Indian Ocean on decadal time

scales. In this study, we suggest that decadal variations in

the eastern Indian Ocean are mainly caused by oceanic

signals entering from the Pacific in the form of baroclinic

Rossby waves, while those in the western Indian Ocean

are dominated by the local wind stress curl response to

conditions in the Pacific via the atmospheric bridge.

The remainder of this paper is organized as follows.

The data and model experiments used in this study are

described in section 2. Decadal variations in the Indian

Ocean subsurface OHC and their connection with IPO

variability are examined using reanalysis products in

section 3. A linear baroclinic Rossby wave model is then

used to illustrate the relative roles of local wind stress

curl and remote Pacific Ocean forcing to the Indian

Ocean (section 3c). OGCM sensitivity experiments

provide additional support for the hypotheses derived

from the ocean reanalyses and linear baroclinic Rossby

wave model (section 3d). Summary and discussion are

provided in section 4.

2. Data and method

a. Observational data and reanalysis products

Several observational and reanalysis products are

used in this study. TheGECCO2 reanalysis (Köhl 2015),
produced by the German contingent of the Estimating

the Circulation and Climate of the Ocean project

(ECCO; www.ecco-group.org), is used as the primary

dataset to investigate the decadal variability across the

Indian and Pacific Oceans during the period of 1948–

2014. GECCO2 has been produced using the Massa-

chusetts Institute of Technology General Circulation

Model (MITgcm) with 50 vertical levels and a horizontal

grid spacing of 18. An adjoint method has been used to

adjust the model outputs for consistency with available

observational data. The background atmospheric state is

taken from the 6-hourly National Centers for Environ-

mental Prediction (NCEP)–National Center for Atmo-

spheric Research (NCAR) reanalysis (R-1).

In addition, the Hadley Centre EN4.0.2 dataset, the

SimpleOceanDataAssimilation version 2.2.4 reanalysis

(SODA2.2.4), and the European Centre for Medium-

RangeWeather Forecasts (ECMWF)Ocean Reanalysis

System, version 4 (ORAS4) are also used as ancillary

datasets to assess the robustness of findings based on

GECCO2. EN4, an objective gridded hydrographic

dataset produced by the Met Office Hadley Centre

(Good et al. 2013), covers the period from 1900 to the

present with a 18 horizontal grid spacing, and its main

data source is the 2009 version of the World Ocean

Database (WOD09). Extensive quality control pro-

cedures are used to generate monthly objective analyses
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of ocean temperature and salinity, along with un-

certainty estimates. The gridded data are relaxed to the

1971–2000 climatology when observational data are

unavailable. SODA2.2.4 is provided on a 0.58 regular
grid for the period of 1871–2008 (Carton et al. 2000;

Carton andGiese 2008). This reanalysis was constructed

using version 2.0.1 of the Parallel Ocean Programmodel

(POP2.0.1) forced by surface wind stresses from the

NOAA–Cooperative Institute for Research in Envi-

ronmental Sciences (CIRES) Twentieth Century Re-

analysis (20CRv2). Surface heat fluxes are calculated

using bulk formulas, and data assimilation in SODA is

conducted using the sequential estimation method.

ORAS4 (Balmaseda et al. 2013b) uses version 3.0 of

the Nucleus for European Modelling of the Ocean

(NEMO3) ocean model with a standard horizontal grid

spacing of 18. Wind stresses and other atmospheric

forcings are taken from the 40-yr ECMWF Re-Analysis

(ERA-40) from September 1957 to December 1989, the

ECMWF interim reanalysis (ERA-Interim) from 1989

to 2009, and the ECMWFoperational analyses from 2010

onward. The NEMO variational data assimilation

(NEMOVAR), which uses a three-dimensional varia-

tional data assimilation system (3DVAR) in a first

guess at appropriate time configuration, has been in-

troduced in ORAS4. ORAS4 uses a model bias-

correction scheme, which is a latitudinal-dependent

method. Key details of the ocean reanalyses used in

this study are listed in Table 1. Despite discrepancies

among these different datasets, the results obtained in

this analysis are robust. We therefore only present those

results based on GECCO2 in the following section.

Monthly multisatellite merged SSHA for 1993–2014

on a 0.258 horizontal grid are obtained from the Collecte

Localisation Satellites (CLS) Archiving, Validation,

and Interpretation of Satellite Oceanographic Data

(AVISO). Monthly SST data are taken from the NOAA

Extended Reconstructed SST (ERSST) version 3 data-

set, which is available starting from 1854 (Smith et al.

2008). Surface wind stress are from ERA-40 for 1958–

2001 (Uppala et al. 2005). TwentiethCenturyReanalysis

(20CR) wind stress data for 1871–2010 (Compo et al.

2011) and R-1 data from 1948 to the present (Kalnay

et al. 1996) are also used to assess the robustness of the

results. Discrepancies among reanalysis datasets may

arise from differences in physical parameterizations,

model boundary conditions, bias-correction proce-

dures, assimilated observational data, and other factors

(Fujiwara et al. 2017). Comparisons among these data-

sets help to confirm the robustness of our results re-

gardless of different processing techniques used in each

dataset, and sensitivities to the choice of dataset are

discussed in section 4.

Monthly anomalies of each variable are computed by

subtracting the corresponding monthly climatology.

Bilinear interpolation is used to map all variables onto a

common 18 3 18 regular latitude–longitude grid. To

isolate variability at decadal and longer time scales, the

long-term linear trend is first removed, and then an 8-yr

low-pass Butterworth filter (Butterworth 1930) is ap-

plied to all variables. The first and last four years of data

are excluded in our analysis to avoid artifacts that arise

from the low-pass filtering. The results are similar when

8–30-yr bandpass filters are applied, indicating that de-

cadal variability dominates variations at time scales

longer than 8 yr in these datasets. EOF is calculated

based on the covariance matrix of the corresponding

variable with the weight proportional to the square root

of the area. Principal component (PC) time series are

normalized, so that the spatial EOF patterns show typ-

ical magnitudes associated with one standard deviation

of the corresponding PCs.

The IPO is defined as the leading EOF of low-pass-

filtered monthly SST anomalies (based on ERSST) over

the Pacific Ocean (608S–608N) and its corresponding

first PC (PC1) time series is herein referred to as the IPO

index. The positive phase of the IPO is characterized by

anomalously warm SST in the eastern tropical Pacific

Ocean. We use the IPO index rather than the PDO in-

dex for this analysis because the IPO better represents

variability in the entire Pacific Ocean (Power et al. 1999;

Meehl and Arblaster 2002; Meehl and Hu 2006),

whereas the PDO primarily characterizes SST variabil-

ity in the North Pacific Ocean (Alexander 2010).

Because of the high degree of serial correlation in the

low-pass-filtered time series, statistical significance is

TABLE 1. Summary of ocean reanalyses used in this study.

Product Forcing Configuration Analysis method (variables)

GECCO2 R-1 18 MITgcm (1948–2014) 4DVAR (SSH, T, S, and SST)

SODA2.2.4 20CRv2 0.58 POP2.0.1 (1871–2008) Optimum interpolation (T, S, and SST)

ORAS4 ERA-40 (1957–89) 18 NEMO3 (Sep 1957–present) 3DVAR (SLA, T, S, and SST)

ERA-Interim (1989–2009)

ECMWF operational analyses (2009–14)

EN4 — 18 (1900–present) Optimum interpolation (T and S)
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determined by the nonparametric random phase method

(Ebisuzaki 1997). Unless specified otherwise, all correla-

tion coefficients are statistically significant at the 95%

confidence level. The 208C isothermal depth (D20) is used

as a proxy for thermocline depth (Wyrtki and Kendall

1967; Xie et al. 2002; Annamalai et al. 2003).

b. Ocean model simulation

The OGCMused in this study is the numerical ocean–

sea ice model NEMO, version 2.3, (Madec et al. 2015) in

its global tripolar configuration at 0.58 horizontal reso-
lution (ORCA05 configuration) with 46 vertical levels

ranging in thickness from 6m near the surface to 250m

in the deepest layers, while bottom topography is rep-

resented by partial steps (Barnier et al. 2006). The ex-

periments are driven by prescribed atmospheric

boundary conditions as given by the Co-ordinated

Ocean–Ice Reference Experiments (CORE; Griffies

et al. 2009, based on Large and Yeager 2004). The ref-

erence simulation (REF) is a hindcast forced by inter-

annually varying fields for the period 1958–2004,

preceded by a 20-yr-long spinup. Additionally, two

sensitivity experiments have been conducted. In the

PAC experiment, the interannual wind stress and heat

fluxes are applied only over the Pacific Ocean, while the

rest of the ocean is forced with repeated climatological

fields; and in the IND experiment, the interannual

forcing is only applied in the Indian Ocean. To remove

spurious model drift, the trend in an experiment driven

by climatological forcings (CLIM) was subtracted from

the interannually forced cases prior to further analysis.

The experiments and their performances have been de-

scribed and evaluated in previous studies (Schwarzkopf

and Böning 2011; Ummenhofer et al. 2013), showing that

the Indo-Pacific upper-ocean properties are simulated re-

markably well, including the main features of the observed

mean seasonal cycle and its associated variance. Compared

with the ORAS4 reanalysis, REF also reproduces the lin-

ear trend during the 1960s–1990s, with subsurface cooling

at 50–300-m depth in the 108–208S band (Ummenhofer

et al. 2017). Good agreement between observed and

modeled SST anomalies in the eastern Indian Ocean in-

dicates the model’s credibility. However, the amplitudes

of the Indian Ocean dipole (IOD) are overestimated.

which can be attributed to the shallower thermocline off

the coast of Sumatra–Java with respect to observations

(Ummenhofer et al. 2013).

3. Results

a. Decadal variability of the subsurface Indian Ocean

To investigate decadal variations in the subsurface

Indian Ocean, EOF analysis is performed on detrended

8-yr low-pass-filtered subsurface (50–300m) OHC. The

first two EOF modes and their corresponding PC time

series based on the GECCO2 reanalysis are shown in

Fig. 1. The first mode, accounting for around 30% of the

variance, is characterized by a meridional dipole be-

tween the northern and southern Indian Ocean and

manifests on the multidecadal time scale (Fig. 1c). This

multidecadal seesaw of OHC between the northern and

southern parts of the tropical Indian Ocean has pre-

viously been linked with variations in the meridional

overturning circulation of the upper Indian Ocean (Lee

2004) and ITF heat transport (Dong and McPhaden

2016). The second EOF mode (Fig. 1b), which accounts

for around 20% of the OHC total variance, is expressed

primarily on decadal time scales (Fig. 1d). The maxi-

mum anomalies are found between 108 and 208S in the

southern Indian Ocean, with zonal dipole structure

characterized by positive anomalies west of 1008E and

negative anomalies to the east. The first two EOF pat-

terns are robust and also exhibited in other datasets,

although the order of the two leading modes is sensitive

to the choice of dataset or time period (figure not

shown). As our intention is to address decadal vari-

ability in this study, we therefore focus on the latitude

band with the maximum signal in EOF2 (108–208S) in

the following analysis.

The climatological thermocline depth (here repre-

sented by D20) in the Indian Ocean is typically be-

tween 100 and 200m below the surface (Fig. 2a), with a

thermocline dome in the band of 58–108S in the western

Indian Ocean. Temporal variations in thermocline

depth are closely associated with those in subsurface

OHC as illustrated by the strong correlation between

D20 and subsurface OHC (Fig. 2b), where the latter is

integrated between 50- and 300-m depth. The correla-

tion between D20 and subsurface OHC exceeds 0.9 for

most of the Indian Ocean. Moreover, the correlation

map between D20 and PC2 of OHC anomalies (Fig. 2c)

displays a similar east–west dipole structure as the

EOF2 (Fig. 1b), indicating that the decadal variation of

OHC is dominated by that in D20 where vertical gra-

dients of temperature are largest and hence, the vari-

ation of OHC reflects the dynamical fluctuation in the

thermocline. In our subsequent analysis, we will

therefore focus especially on decadal variations in

subsurface OHC associated with fluctuations in the

thermocline.

b. Connections between the Indian and Pacific
Oceans

In this section, we investigate how the Pacific Ocean

influences the Indian Ocean on decadal time scales.

The IPO index is used to represent the Pacific Ocean
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decadal variability, and the regression map of the In-

dian Ocean subsurface OHC anomalies onto the IPO

is shown in Fig. 3. A zonal dipole structure is evident in

the band of 108–208S in the southern Indian Ocean

(black box in Fig. 3). The regression map bears a re-

markable resemblance to the OHC EOF2 spatial pat-

tern (Fig. 1b). The spatial correlation between Fig. 1b

and Fig. 3 is 0.85 (P , 0.05), suggesting that Indian

Ocean subsurface decadal variability is associated with

the state of the Pacific Ocean.

Figure 4 shows the longitude–time Hovmöller dia-

gram of 8-yr low-pass-filtered anomalies in subsurface

OHC based on the GECCO2 reanalysis for 1948–2014.

OHC anomalies are averaged along 108–208S where the

largest variance occurs in the southern Indian Ocean

(Fig. 4a), and along 58–108N in the Pacific Ocean

(Fig. 4b). The 8-yr low-pass-filtered IPO index based on

ERSST is also shown for reference (Fig. 4c). Previous

studies (Wijffels and Meyers 2004; Cai et al. 2005) have

suggested that signals in the tropical North Pacific

Ocean (here represent by 58–108N; red box in Fig. 3)

could propagate into the southern Indian Ocean

through the ITF region. Although the South Pacific

Ocean also contributes to Indian Ocean variations on

decadal time scales (Vargas-Hernandez et al. 2014),

IPO-related anomalies in the Pacific are almost sym-

metric. We therefore use the signal in the North Pacific

to represent variations in both the North and South

Pacific. As shown in the regression map (Fig. 3), OHC

anomalies in the western Pacific link with the eastern

Indian Ocean through the Indonesian Seas, suggesting

an oceanic connection between the western Pacific and

eastern Indian Ocean on decadal time scales. Further-

more, anomalies in the eastern Indian Ocean vary con-

sistently with those in the western Pacific Ocean at a lag

of several months (Fig. 4), implying the oceanic pathway

for the Pacific Ocean to influence the eastern Indian

Ocean decadal variability. TheOHC anomalies entering

at the eastern boundary of the southern Indian Ocean

originate from the western Pacific Ocean and then

propagate westward via oceanic Rossby waves or ad-

vection to impact the western Indian Ocean on decadal

time scales (Li and Clarke 2004; Wijffels and Meyers

2004; Zhou et al. 2017). However, discontinuities often

appear in these westward-propagating OHC anomalies

around 908–1008E (Fig. 4a). Indeed, many of the

westward-propagating OHC anomalies in the western

part of the Indian Ocean appear to originate from the

central Indian Ocean rather than from the eastern

boundary, particularly during the 1970s and 1980s. In

FIG. 1. (a),(b) The two leading EOF patterns and (c),(d) their corresponding PC time series of detrended 8-yr

low-pass-filtered subsurface OHC (109 Jm22) integrated over 50–300-m depth based on the GECCO2 ocean re-

analysis for 1948–2014. The fractional variance explained by each mode is shown in the top-right corner above

(a),(b). The black box in (b) indicates the region 108–208S, 408–1208Ewhere variability associated with the second

EOF mode is largest.
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addition, the OHC anomalies during that period were

organized into dipole structures, with opposing anoma-

lies in the eastern and western parts of the south Indian

Ocean. A similar discontinuity emerged near the same

location after 2005. The frequent discontinuities in sig-

nal propagation in the central Indian Ocean and the

prominent east–west dipole structure inOHC anomalies

lead us to hypothesize that the mechanisms by which the

Pacific Ocean influences the southern Indian Ocean on

decadal time scales are distinct between the eastern and

western parts of the Indian Ocean.

To further explore the influence of Pacific variability

on the Indian Ocean, we calculate lead–lag correla-

tions between subsurface OHC anomalies and the IPO

index (Fig. 5). Correlations are predominantly nega-

tive in the Indian Ocean east of 1008E, with the maxi-

mum amplitude of the correlation coefficient lagging

the IPO index by about one year. This negative cor-

relation propagates westward from the west coast of

Australia, reaching 1008E in the central Indian Ocean

after approximately 1.5 years. The relatively slow

propagation of this signal suggests that the influence of

the Pacific Ocean on the eastern Indian Ocean oper-

ates primarily through oceanic pathways. The esti-

mated propagation speed of these decadal-scale

anomalies in the eastern Indian Ocean is approxi-

mately 5.5 cm s21, consistent with previous estimates of

Rossby wave propagation in this latitude band

(White 2000).

By contrast, significant positive correlations west of

1008E peak at zero lag. The nearly instantaneous re-

sponse of the central–western Indian Ocean to IPO

variability suggests that the Pacific Ocean influences

conditions in the western Indian Ocean mainly via the

atmospheric bridge. Regressing Ekman pumping onto

the simultaneous IPO index reveals a striking nega-

tive anomaly in Ekman pumping in the central Indian

Ocean (Fig. 6). Positive wind stress curl over the

central Indian Ocean during the positive phase of

the IPO induces Ekman downwelling, which in turn

triggers westward-propagating downwelling Rossby

FIG. 2. Spatial patterns of (a) climatological D20 (m), (b) the local

correlation between subsurface OHC (50–300m) and D20, and

(c) correlation between D20 and PC2, based on the GECCO2 re-

analysis for 1948–2014. Stippling in (c) indicates regions where corre-

lations are statistically significant at the 95% confidence level.

FIG. 3. Regression of subsurface OHC anomalies onto the simulta-

neous IPO index based on the GECCO2 reanalysis for 1948–2014.

SubsurfaceOHCis integratedbetween50- and300-mdepth (109 Jm22).

Stippling indicates locations where the regression is statistically

significant at the 95% confidence level. The black box outlines the

region 108–208S, 408–1208E where the largest anomalies in the

Indian Ocean are located, and the red box outlines the region 58–
108N, 1208E–1808 (used for the Pacific OHC in Fig. 4b).
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waves. The westward propagation of these down-

welling Rossby waves deepens the thermocline and

increases OHC in the western Indian Ocean. Note that

the maximum OHC anomalies (around 808E) are lo-

cated slightly west of the region with the largest re-

gression of Ekman pumping onto IPO (908–1008E),
where the discontinuities appear for those westward-

propagating OHC anomalies from the eastern

boundary origin. This mismatch can be reconciled by

the fact that Ekman pumping impacts the OHC not

only locally but also remotely via the cumulative

signals of westward-propagating Rossby waves. To

further examine the mechanisms described above,

low-pass-filtered time series of wind stress curl in the

central Indian Ocean and subsurface OHC in the

western Indian Ocean are shown in Fig. 7a. Variations

in OHC averaged over the western Indian Ocean

follow variations in wind stress curl averaged over the

central Indian Ocean (Fig. 7a). The lead–lag correla-

tion between these two time series (Fig. 7b) peaks at a

FIG. 4. Hovmöller diagram of 8-yr low-pass-filtered subsurface OHC anomalies integrated between 50- and 300-m

depth (109 Jm22) averaged over (a) 108–208S in the IndianOcean and (b) 58–108N in the PacificOcean. Data are from

the GECCO2 reanalysis for 1948–2014. (c) The 8-year low-pass-filtered IPO index based on ERSST.

FIG. 5. Longitudinal distribution of lead–lag correlation between

subsurface OHC anomalies averaged over the zonal band of 108–
208S in the Indian Ocean and the IPO index. The lag year is shown

along the y axis, with positive values indicating that the IPO index

leads the OHC anomalies. Correlation coefficients that are statis-

tically significant at the 90% confidence level are marked with red

dashed contours.

FIG. 6. Regression of Ekman pumping in GECCO2 onto the

simultaneous IPO index. Ekman pumping velocity is calculated by

wE 5 = 3 (t/rf ), with the b term included (Ekman upwelling is

positive; 1026 m s21). Stippling indicates regressions that are sta-

tistically significant at the 95% confidence level. The black box

marks the region 108–208S, 908–1008E used in later analysis.
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value of 0.9, with central Indian Ocean wind stress curl

leading western IndianOceanOHCby about 12months.

This result suggests that decadal-scale variations in sub-

surface OHC in the western Indian Ocean primarily

emerge as a response to westward-propagating Rossby

waves induced by wind-driven Ekman pumping in the

central Indian Ocean. Variations in the latter are linked

to the IPO via the atmospheric bridge. This relationship

contrasts with that in the eastern IndianOcean, where the

IPO influence is largely communicated by the propaga-

tion of Rossby waves carrying oceanic signals from the

Pacific westward through the eastern boundary.

c. Linear Rossby wave model

The statistical analysis described above suggests that

the Pacific Ocean affects decadal variations in the

eastern and western parts of the Indian Ocean through

different mechanisms. The primary role in the western

Indian Ocean is played by the surface wind forcing in

the central Indian Ocean via the atmospheric bridge,

whereas the primary role in the eastern Indian Ocean

is played by ocean transport across the eastern

boundary. In this section, this interpretation is further

evaluated using a simple reduced gravity model

(Woodberry et al. 1989; Périgaud and Delecluse 1992;

Masumoto and Meyers 1998; Birol and Morrow 2001;

Potemra 2001). Comparison with observations indicates

that this simple linear model captures variations in

SSHA well (Périgaud and Delecluse 1992). As SSHA

are tightly correlated with vertical displacements in

the thermocline, variations in SSHA reflect corre-

sponding variations in D20 and subsurface OHC.

The advent of satellite retrievals of SSHA has enabled

global coverage and dramatically expanded data avail-

ability, especially in the Indian Ocean where obser-

vational records are sparse. Hindcast SSHA derived

from the simple reduced gravity model are compared

with both reanalysis (GECCO2) and satellite (AVISO)

estimates.

Here, the simple linear 1.5-layer reduced gravity

model is employed to separate the relative role of wind

stress curl and the eastern boundary condition. Under

the long-wave approximation, the large-scale linear

vorticity equation of baroclinic ocean response to wind

stress curl can be written as

›h

›t
2 c

R

›h

›x
52

g0

r
0
g
k � =3

t

f
, (1)

where h is the SSHA, cR is the observed speed of the

first baroclinic-mode Rossby wave, g0 is the reduced

gravity, r0 is the reference seawater density, f is the

Coriolis parameter, k is the unit vector in the vertical

direction, and t is the wind stress. The solution can be

obtained by integrating Eq. (1) from the eastern

FIG. 7. (a) Low-pass-filtered time series of wind stress curl (blue; 1027 Nm23) averaged over 108–208S, 908–1008E
(black box in Fig. 6), and western IndianOceanOHC anomalies (red; 109 Jm22) averaged over 108–208S, 508–908E,
and (b) lead–lag correlations in months between the wind stress curl and OHC. Red asterisks in (b) indicate that

correlations are statistically significant at the 95% confidence level.
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boundary (x 5 xe) along the baroclinic Rossby wave

characteristic:
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To get the hindcast SSHA field in the southern Indian

Ocean, monthly wind stress from ERA-40 (1958–2001)

is used and the Rossby wave speed at each latitude is

estimated from the observed SSHA. The eastern

boundary is set at 120.58E, and h(xe, y, t) is obtained

from the GECCO2 monthly SSHA at 120.58E.
Hovmöller diagrams in Fig. 8 show part of the simu-

lated SSHA averaged over the zonal band of 108–208S
during 1993–2001 to visually validate against the ob-

served satellite SSH. For comparison, SSHA from

GECCO2 (Fig. 8d) and AVISO (Fig. 8e) during the

same period are also shown. The simulated total SSHA

bears an evident resemblance to the observed SSHA.

The negative SSHA, for example, originated from the

eastern boundary in 1997 (Figs. 8d,e) and propagated

across the entire basin before reaching the western coast

of the Indian Ocean in late 1999. Both reanalysis and

satellite estimates likewise show positive anomalies

emerging in the eastern Indian Ocean as the negative

anomaly propagated westward across the basin. The

linear model (Fig. 8c) captures both features well. Rel-

ative to the eastern Indian Ocean, wind-driven Ekman

pumping causes the largermagnitude of SSHA variation

in the western Indian Ocean, especially west of 1008E
(Fig. 8a).

To evaluate the hindcast skill of the linear Rossby

wavemodel, the longitudinal distribution of correlations

between SSHA from the Rossby wave model and

GECCO2 is calculated during the period of 1960–2001

(Fig. 9). All estimates have been low-pass filtered to

remove interannual variability. Correlations between

the SSHA from the different components of the Rossby

wave model, that is, those generated by wind-driven

Ekman pumping (Fig. 9, blue line), eastern boundary

condition (Fig. 9, green line), and total SSHA (Fig. 9, red

line; the sum of SSHA caused by Ekman pumping and

eastern boundary condition) against GECCO2 are

shown. The component of the model-simulated SSHA

generated by wind-driven Ekman pumping (Fig. 9, blue

line) is significantly correlated with GECCO2 estimates

in the western Indian Ocean but not in the eastern In-

dian Ocean. Conversely, the correlation between the

component of model-simulated SSHA due to the east-

ern boundary condition and GECCO2 (Fig. 9, green

line) is strong and significant in the eastern Indian

FIG. 8. Hovmöller diagrams of modeled and observed SSHA (cm) averaged over the zonal band of 108–208S during 1993–2001.

(a) SSHA generated by wind-driven Ekman pumping, (b) SSHA derived from the eastern boundary radiation, (c) the sum of both

components in the linear Rossby wave model, (d) the reanalysis SSHA from GECCO2, and (e) the observed SSHA from AVISO. The

eastern boundary is set at 120.58E.
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Ocean but gradually diminishes as distance to the east-

ern boundary increases. Zonal variations in the corre-

lation between the simulated total SSHA and GECCO2

(Fig. 9, red line) are likewise dominated by the eastern

boundary condition east of 1008E, but by the wind-

driven Ekman pumping west of 908E. These results

support our contention that oceanic signals from the

western Pacific Ocean dominate decadal-scale thermo-

cline and OHC variations in the eastern Indian Ocean,

while wind-driven Ekman pumping associated with the

IPO (Fig. 6) dominates these variations in the western

Indian Ocean.

d. OGCM experiments

A REF simulation and two OGCM sensitivity ex-

periments (PAC and IND) are used to evaluate the role

of the Pacific Ocean in Indian Ocean decadal variability

(see section 2b). Figure 10 shows the zonal propagation

of 8-yr low-pass-filtered subsurface OHC averaged over

the 108–208S band in the southern Indian Ocean for

1960–2004. The output from the REF simulation

(Fig. 10b) broadly resembles the GECCO2 reanalysis

(Fig. 10a). During the 1960s, anomalies that entered the

southern Indian Ocean at the eastern boundary then

propagated across the Indian Ocean to the western In-

dian Ocean. Both the reanalysis and the model output

indicate that signal propagation from the eastern

boundary was often blocked at other times, with dis-

continuities consistently emerging near 1008E. During

these periods, OHC anomalies in the southern Indian

Ocean were organized into a zonal dipole with opposite

signs in the eastern and western parts of the basin. Both

the dipole structure and the discontinuity near 1008E
were more prominent after the mid-1970s.

Two parallel sensitivity experiments were conducted

by imposing interannually varying surface heat fluxes

and wind stresses only in the Pacific Ocean (PAC ex-

periment) or Indian Ocean (IND experiment), re-

spectively, as described in section 2. In the PAC

experiment (Fig. 10d), anomalies from the western Pa-

cific Ocean entered the eastern Indian Ocean through

the Indonesian region and then propagated westward

across the basin. This experiment reproduces much of

the decadal-scale OHC variations in the eastern Indian

Ocean simulated by REF, but captures neither the

magnitude nor the temporal evolution of OHC varia-

tions in the western Indian Ocean. Relative to the PAC

experiment, the IND experiment reproduces much

more of the OHC variance in the Indian Ocean

(Fig. 10e). It is noteworthy that the IND experiment

mainly produces OHC anomalies west of 1008E in the

Indian Ocean, while the magnitude of OHC anomalies

east of 1008E is typically smaller than those produced by

the PAC experiment. This result suggests that variations

in the eastern Indian Ocean are weakened substantially

when variations in the PacificOcean are suppressed, and

supports our contention that the eastern IndianOcean is

linked to interdecadal variability in the Pacific Ocean

primarily via oceanic pathways. The sum of OHC

anomalies produced by the PAC and IND experiments

(Fig. 10c) closely matches the output from the REF

simulation, indicating that the total OHC anomalies in

the Indian Ocean (REF) can be regarded as a linear

superposition of a locally driven signal (IND) and a re-

mote signal that propagates though oceanic pathways

from the Pacific (PAC).

Regression of Ekman pumping onto the IPO index

using outputs from the REF simulation (Fig. 11) shows

prominent negative correlations over the central south

Indian Ocean, with a spatial distribution quite similar to

that based onGECCO2 (Fig. 6). This spatial distribution

further supports the idea that conditions in the Pacific

Ocean can induce Ekman pumping in the central Indian

Ocean through the atmospheric bridge.When the IPO is

in its positive phase, positive wind stress curl over the

central Indian Ocean induces downward Ekman

pumping that deepens the thermocline and excites

downwelling signals that propagate westward as Rossby

waves. The influence of these downwelling Rossby

waves is to warm the subsurface layer of the western

Indian Ocean. The results of these OCGM sensitivity

experiments are consistent with the results based on

GECCO2 and the linear Rossby wave model: the

FIG. 9. Correlations between the linear Rossby wave–modeled

SSHA induced by wind-driven Ekman pumping (blue), eastern

boundary condition (green), and overall SSHA (red; sum of Ekman

pumping and eastern boundary condition) against the GECCO2

SSHA for the period of 1960–2001. The SSHAs have been low-pass

filtered before correlations are calculated. Their corresponding 95%

significance levels are shown by dotted lines.
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eastern boundary condition dominates decadal-scale

OHC variability in the eastern Indian Ocean, while

the wind-driven Ekman pumping occurring in the cen-

tral Indian Ocean impacts the western part by triggering

westward Rossby waves.

4. Summary and discussion

Decadal variations in the subsurface (50–300m)

OHC in the southern Indian Ocean and their links to

the IPO are examined based on reanalysis products

and OGCM hindcast simulations. Changes in OHC

are closely linked to changes in thermocline depth

(D20) on decadal time scales, as shown by correlations

exceeding 0.9 over most of the Indian Ocean. Decadal

variations in Indian Ocean subsurface OHC can thus

be mainly attributed to dynamical fluctuations in the

thermocline. The spatial distribution of OHC re-

gressed onto the IPO index closely matches the second

EOF mode of OHC, which in turn dominates varia-

tions in the Indian OceanOHC on decadal time scales.

This close correspondence suggests that decadal sig-

nals in the subsurface OHC of the Indian Ocean are

associated with the IPO. As described above, previous

studies have already suggested that distinct mecha-

nisms are responsible for the interannual variability of

the western and eastern Indian Ocean. Here we add to

this body of work by detailing the existence of these

distinct mechanisms but on the decadal time scale. In

contrast to previous studies of decadal variability in

the Indian Ocean that have treated the Indian Ocean

as a whole basin, results shown in this study highlight

the different mechanisms by which the Pacific Ocean

influences the eastern and western parts of the Indian

Ocean on decadal time scales.

Examination of reanalysis data indicates that the

Pacific influence on decadal variability in the eastern

Indian Ocean operates mainly via oceanic pathways.

FIG. 10. Hovmöller diagrams of 8-yr low-pass-filtered Indian Ocean subsurface OHC anomalies integrated between 50- and 300-m

depth (109 J m22) averaged along 108–208S based on the (a) GECCO2 reanalysis, (b) REF simulation, (c) sum of PAC and IND simu-

lations, (d) PAC simulation in which the interannual heat fluxes andwind stresses are only applied in the PacificOceanwith climatological

forcing elsewhere, and (e) IND simulation in which only the Indian Ocean is forced with interannual heat fluxes and wind stresses. All

anomalies are calculated relative to the mean annual cycle for 1960–2004.
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This conclusion is supported by results based on a

linear Rossby wave model and OGCM sensitivity

experiments, which indicate that decadal variations

in SSHA and OHC in the south Indian Ocean east of

1008E mainly enter via the eastern boundary. In the

OGCM sensitivity experiment of PAC, which im-

poses observed surface forcing over the Pacific only,

westward-propagating OHC anomalies entering at

the eastern boundary of the Indian Ocean dominate

OHC variability, especially in the region east of

1008E. These results implicate the Pacific as the

source of these anomalies and confirm that anomalies

enter the eastern Indian Ocean primarily through

oceanic pathways rather than atmospheric forcing.

By contrast, the Pacific influence on the western In-

dian Ocean operates through the atmospheric bridge.

Remote variations in the Pacific Ocean induce

anomalous wind-driven Ekman pumping in the cen-

tral Indian Ocean. Rossby waves triggered by this

anomalous Ekman pumping transmit these signals

westward, displacing the thermocline and altering

subsurface OHC in the western Indian Ocean. The

linear Rossby wave model indicates that variations in

SSHA west of 1008E arise mainly from Ekman

pumping, and much of the OHC variability in the

western Indian Ocean can be reproduced in an

OGCM by specifying the atmospheric forcing over

the Indian Ocean alone. In summary, the Pacific

Ocean drives decadal variations in the eastern Indian

Ocean subsurface OHC via oceanic pathways, while

wind-driven Ekman pumping, modulated via the at-

mospheric bridge from the Pacific, is the key driver of

decadal variations in subsurface OHC in the western

Indian Ocean.

Although we have emphasized the oceanic con-

nection between the western Pacific and eastern In-

dian Ocean, local winds also contribute to the decadal

variations of OHC in the eastern Indian Ocean. As

shown in the IND simulation (Fig. 10e) in which at-

mospheric forcing is only applied in the Indian Ocean,

OHC anomalies in the eastern Indian Ocean are af-

fected by local winds. Comparison of OHC anomalies

from the PAC and IND experiments reveals that

these wind-driven anomalies have smaller amplitudes

than those transmitted from the Pacific via oceanic

pathways in the PAC simulations. This result further

bolsters the hypothesis that the oceanic pathway

plays the dominant role in determining subsurface

OHC variation in the eastern Indian Ocean on de-

cadal time scales. It is worth noting that the Indian

Ocean local winds also contain the signal from the

Pacific, as the tropical Pacific and Indian Ocean are

highly coupled through the atmospheric Walker

circulation.

The results shown in this paper are based primarily

on the GECCO2 reanalysis. Other oceanic gridded

observation and reanalyses have been used to assess

the robustness of our findings, including the EN4

analysis and the ORAS4 and SODA2.2.4 reanalyses.

Figure 12 shows Hovmöller diagrams of 8-yr low-

pass-filtered Indian Ocean subsurface OHC anoma-

lies averaged over 108–208S during 1960–2004. Five

different estimates are shown, including the OGCM

REF simulation. Notable discrepancies are evident

among these datasets, particularly during the early

part of the record when observational data in the

Indian Ocean was especially sparse (Nidheesh et al.

2017). Noting the limited number of observed tem-

perature profiles between 100 and 2000m in the

World Ocean Atlas 2001, Harrison and Carson (2007)

suggested that sparse data coverage in the Indian

Ocean (and especially in the southern Indian Ocean)

would pose difficult challenges for decadal climate

research in this region. Reliable, long-term oceanic

observations are crucial for advancing our un-

derstanding of decadal variability in the climate sys-

tem. Significant strides have been made to improve

the availability of hydrographic measurements in the

Indian Ocean, including the deployment of the Indian

Ocean Observing System (IndOOS), the Argo net-

work, and satellite observations of surface winds and

SSH. Despite the discrepancies shown in Fig. 12,

many of the key features are evident among all five

datasets. These robust features include the disconti-

nuities in subsurface OHC anomalies at 1008E, which
we attribute to wind stress curl anomalies in the

central Indian Ocean.

FIG. 11. Regression of Ekman pumping (positive values corre-

spond to upwelling; 1026 m s21) onto the simultaneous IPO index

using output from the OGCM REF simulation. Stippling indi-

cates regressions that are statistically significant at the 95%

confidence level.
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To further evaluate the robustness of our results

regardless of the choice of dataset, we have forced the

linear Rossby wave model using eastern boundary

conditions derived from the other two ocean rean-

alyses (ORAS4 and SODA2.2.4; Figs. 13a,b). The

atmospheric forcing for all three simulations is based

on ERA-40. Correlation patterns produced by using

ORAS4 and SODA are qualitatively consistent with

that produced by using GECCO2, with the dominance

of the eastern boundary condition in the eastern In-

dian Ocean and wind stress forcing in the western

Indian Ocean. Furthermore, we test the sensitivity of

our results to the atmospheric forcing in a similar way,

by combining wind stress forcing based on 20CR and

R-1, respectively, with eastern boundary conditions

derived from GECCO2. Both results show similar

correlation patterns: the contribution of wind stress

curl dominates variations in SSHA west of 908E but

has little impact in the eastern Indian Ocean. This

sensitivity analysis indicates that the conclusions

drawn from the linear Rossby wave model results are

robust to the choice of the dataset used to force the

model. Despite the similarity in correlation results

based on different wind data, we note the presence of

substantial discrepancies between the three wind

stress curl fields. Figure 14 shows meridionally aver-

aged climatological wind stress curl from the three

atmospheric reanalyses along with their standard de-

viations. Relative to R-1 and 20CR, ERA-40 wind

stress curl has both larger mean values and larger

standard deviations across the basin. Similar discrep-

ancies exist in the zonal wind stress (not shown). This

discrepancy in the amplitude of wind stress curl has

been previously noted by McGregor et al. (2012) and

reasons that account for this discrepancy should be

investigated in future studies.

We have primarily used the IPO index to represent

the Pacific decadal variability in our analysis. The IPO

is characterized by a tripole pattern of SSTA, with

three large centers of action in the Pacific Ocean on

decadal time scales, namely, the North Pacific, the

eastern tropical Pacific, and the South Pacific (Henley

FIG. 12. Hovmöller diagrams of 8-yr low-pass-filtered Indian Ocean subsurface OHC anomalies integrated between 50- and

300-m depth (109 J m22) averaged along 108–208S based on the (a) OGCM REF simulation, (b) GECCO2 reanalysis, (c) ORAS4

reanalysis, (d) SODA reanalysis, and (e) EN4 analysis. All anomalies are calculated relative to the mean annual cycle for

1960–2004.
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et al. 2015). Ummenhofer et al. (2017) suggested that

multidecadal variations in the Indian Ocean are as-

sociated with the PDO, and Krishnamurthy and

Krishnamurthy (2016) highlighted the link of decadal

variations of Indian Ocean dipole with the PDO. In

addition, the connection between the western South

Pacific Ocean associated with IPO and the southeast-

ern Indian Ocean along the western coast of Australia

was identified by Vargas-Hernandez et al. (2014). It,

therefore, remains unclear which part of the Pacific

plays the predominant role in driving Indian Ocean

variability. We will further examine the relative influ-

ence from these three key regions of the Pacific Ocean

on decadal variability in the Indian Ocean in

future work.
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FIG. 13. As in Fig. 9, but for validation of results derived from the linear Rossby wave model for eastern

boundary conditions based on (a) ORAS4 and (b) SODA (wind stress curl from ERA-40) and for wind

stress curl from (c) 20CR and (d) R-1 (eastern boundary condition based on GECCO2). All results are for

1960–2001.
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FIG. 14. Meridionally averaged (108–208S) climatological mean

wind stress curl (solid lines; 1027 Nm23) based on ERA-40 (black),

20CR (red), and R-1 (blue), along with their corresponding stan-

dard deviations (dashed lines).
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