
1. Introduction
The Northeast U.S. shelf (NES), ranging from the Gulf of Maine (GoM) to Cape Hatteras (Figure 1a), is an 
oceanographically dynamic and highly productive marine ecosystem. It supports some of the most com-
mercially valuable fisheries in the world, along with high gross revenues and employment. Located at the 
downstream end of an extensive coastal buoyancy-driven boundary current system, the NES receives cold 
and fresh arctic-origin water (Labrador shelf and slope waters), accumulated coastal riverine discharge, and 
ice melt that have been advected thousands of kilometers along the western boundary of the North Atlantic 
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(Chapman & Beardsley,  1989; Fratantoni & Pickart,  2007; Loder,  1998; Richaud et  al.,  2016; Townsend 
et al., 2006). Likewise, subtropical water masses, advected by the Gulf Stream (GS), its meanders and rings, 
and the Atlantic temperate slope currents, interacting with the subpolar Labrador slope currents, also in-
fluence the composition of water masses within the NES region (G. Gawarkiewicz et  al.,  2018; Greene 
et al., 2013; Mountain, 2012).

The NES ecosystem structure and function has experienced significant changes as a result of climate-scale 
changes in the physical environment (Greene & Pershing, 2007; Link et al., 2002; Mills et al., 2013; Nye 
et al., 2009). Shifts in marine species distribution, growth, and recruitment have been directly linked to 
changes in ocean temperature (e.g., Kleisner et al., 2016; Miller et al., 2016, 2018; Pinsky et al., 2013). The 
warming trend of ocean temperature further drives oxygen decline, which increases additional physiolog-
ical stress on fish and benthic invertebrates (Brennan et al., 2016). Therefore, changing ocean temperature 
on the NES is an important factor that needs to be considered in marine resource management (e.g., Nye 
et al., 2011; Sullivan et al., 2005; Tommasi, Stock, Hobday, et al., 2017).

Variability in bottom temperature on the NES is strongly influenced by local oceanic processes, for example, 
bottom circulation along the shelf and intrusions of warm and saline slope waters onto the shelf. In the 
Mid-Atlantic Bight (MAB), a distinctive seasonal bottom-trapped cold water mass—the Cold Pool, is main-
tained by the southwestward advection of winter remnant water formed in the vicinity of Nantucket Shoals 
and upstream Georges Bank (GB) and GoM water (e.g., Chen & Curchitser, 2020; Chen et al., 2018; Hought-
on et al., 1982; Lentz, 2017). In the GoM, temperature variations at depth are influenced by two different 
processes: (a) advective inflow of relatively fresh water from the Scotian Shelf (SS) and its modification 
through winter convective mixing (Mountain & Manning, 1994) and (b) inflow of warmer and saltier slope 
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Figure 1. The Northeast U.S. continental shelf (NES) and the Northwest Atlantic (NWA) continental shelf and slope. (a) The Ecosystem Monitoring strata (47 
black polygons) and the grouped 10 subregions (shaded in different colors) on the NES. Names of these 10 subregions are listed below, together with additional 
NWA shelf and slope boxes. Select geographical features are also annotated. (b) The boundaries of a new set of shelf (box01–19) and slope boxes (A–H) are 
shown in pink and yellow (target 10 subregions). Labels corresponding to the 10 newly clustered subregions (box01–10) are shown in (a). The white dashed line 
represents the average position of the sea surface height (SSH) -based Gulf Stream main axis (Chen et al., 2020) and the cyan dots represent the locations of 
temperature observations along the 15°C isotherm used to generate the 200-m temperature-based Gulf Stream Index (Joyce et al., 2009).
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waters through the Northeast Channel (NEC), consisting of varying proportions of Labrador slope water 
and Atlantic temperate slope water, each with their own seasonal property variations (Greene et al., 2013; 
Ramp et al., 1985; Smith et al., 2001). Besides these advective processes, bottom waters on the NES are also 
influenced by cross-shelf exchange processes associated with GS warm-core rings (WCRs) and meanders. 
For example, an observed increase in the number of WCRs and westward shift in the GS destabilization 
point since the early 2000s are consistent with coastal warming trends on the NES (Andres et al., 2016; 
Gangopadhyay et al., 2019; G. Gawarkiewicz et al., 2018).

The NES ecosystem is sensitive to variations in the large-scale ocean and atmospheric circulation as in-
dicated by meridional shifts in the GS path, changes in the Atlantic Meridional Overturning Circulation 
(AMOC), and the North Atlantic Oscillation (NAO). Distribution, recruitment, and biomass of some com-
mercially important fish stock are closely related to changes in bottom temperature on the shelf and chang-
es in the latitude of the GS (Nye et al., 2011; Xu et al., 2018). In addition, changes in GS position lead varia-
tions in silver hake distribution by ∼6 months, which implies predictability at seasonal-to-interannual time 
scales (Davis et al., 2017). In situ measurements also suggest a direct link between the GS position and the 
temperature and salinity near the shelfbreak south of New England on shorter time scales (G. G. Gawarkie-
wicz et al., 2012). Lucey and Nye (2010) indicated that the entire fish and macroinvertebrate assemblage on 
the NES respond to changes in water mass properties as indicated by the GS path index even when taking 
into account the impacts of fishing. Saba et al. (2015) also suggest that the GS position is associated with 
phytoplankton biomass on the shelfbreak, slope, and specific coastal regions of the MAB. Observations and 
modeling studies in the Northwest Atlantic (NWA) point to an inverse relationship between the AMOC and 
the position of the GS (Zhang, 2008) with a weaker AMOC related to a more northerly position of the GS 
(Joyce & Zhang, 2010; Zhang et al., 2011). A northerly shift in the GS is then associated with warmer ocean 
temperature in the NWA (Frankignoul et al., 2001; Peña-Molino & Joyce, 2008; Saba et al., 2016; Zhang & 
Vallis, 2007). In addition, it is also shown that sea surface temperature (SST) anomalies in the GoM corre-
lated with the NAO can be traced upstream to the Labrador shelf 4 years earlier (Xu et al., 2015), which is 
also a source of predictability for the temperature on the NES.

Many studies focused on the impacts of ocean warming on the NES have identified historical and projected 
changes in the distribution of commercial (Kleisner et al., 2017; McHenry et al., 2019; Selden et al., 2018) 
and recreational (Crear et al., 2020) species including two of the most valuable commercial fisheries in the 
U.S., American lobster and sea scallops (Tanaka et al., 2020). Research has also focused on species responses 
to ocean temperature beyond distribution shifts. For example, southern New England yellowtail flounder 
recruitment has been linked to the variability of the size and duration of the MAB Cold Pool represented by 
the average fall bottom temperature (Miller et al., 2016), and the position of the GS (Xu et al., 2018). Howev-
er, the relationship between the Cold Pool and recruitment is not entirely useful for fisheries management 
because skillful annual forecasts of the Cold Pool are not available (Miller et al., 2016). The relationship 
between the GS and yellowtail flounder recruitment provided skillful forecasts in only some years (Xu 
et al., 2018). These studies emphasized the need for skillful forecasts of ecologically relevant environmental 
variables that include estimates of uncertainty, consideration of season, and appropriate lags.

The current generation of climate model-based predictions of ocean temperature based on coarse-resolu-
tion (∼0.5°–2°) global models exhibits in general more reliable skill for basin-scale variations of surface 
temperatures on interannual scales, for example, the El Niño–Southern Oscillation (Stock et  al.,  2015), 
while shelf- and/or slope-scale dynamics are not well captured due to the underrepresented coastal pro-
cesses (e.g., freshwater flux, instabilities, and tides) primarily as a result of their coarse resolution (Stock 
et al., 2011). Recent studies have found that among all North American Large Marine Ecosystems, the cur-
rent global climate model forecast systems have realized only limited prediction skill in the SST along the 
northeast coast (NES and SS) (Hervieux et al., 2019), compared with the west coast (Jacox et al., 2019, 2020; 
Stock et al., 2015). In addition, due to the complexity of shelf- and slope-scale dynamics in this region, 
coarse-resolution climate models cannot simulate the bottom temperature realistically (Saba et al., 2016). 
Hence, there is a need for skillful predictions of ocean temperature on the NES using alternative approach-
es, for example, statistical models, along with improved understanding of the causes of its variability.

In this study, we have developed a hierarchy of statistical models for the prediction of ocean bottom temper-
ature on the NES at seasonal scales. Our goal is to develop a tailored approach to ocean prediction on the 
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NES that meets the scientific needs of fisheries stock assessments and management. This paper is organized 
as follows. In Section 2, we describe the study area and the ocean reanalysis data set used for constructing 
and validating the prediction models. Section 3 describes the statistical prediction models, and methods 
for cross-validation and prediction skill assessment. Results from the prediction models are described in 
Section 4, followed by a discussion and summary in Section 5.

2. Study Area and Data
2.1. Study Area

The NES, the target region for this statistical prediction work, encompasses 47 Ecosystem Monitoring (Eco-
Mon) strata defined by NOAA's Northeast Fisheries Science Center (NEFSC; Figure 1a) (Walsh et al., 2015). 
Here, the 47 strata are grouped into 10 subregions to be used for statistical prediction: box01, southern MAB 
(SMAB); box02, southern shelfbreak (SSB); box03, northern MAB (NMAB); box04, northern shelfbreak 
(NSB); box05, GB; box06, western shallow GoM (WSGoM); box07, deep GoM (DGoM); box08, NEC; box09, 
northern shallow GoM (NSGoM); and box10, Browns Bank (BB), as shown in Figure 1a. Each subregion 
is chosen to include strata with consistent bottom temperature variability as determined by k  -means clus-
tering (Hartigan & Wong,  1979), which is an unsupervised machine learning technique that aggregates 
data based on the similarity of a chosen variable. The cluster analysis is performed separately for the strata 
belonging to the MAB and GB regions and the strata in the GoM region, owing to the distinct hydrographic 
characteristics in each region. The monthly mean bottom temperature anomalies (BTAs) calculated for 
each EcoMon strata based on the monthly GLORYS12v1 ocean reanalysis data set (1993–2018; Section 2.2) 
are used for the cluster analysis, after removing the long-term linear trends (computed over the period of 
1993–2018).

Furthermore, we incorporate the 10 NES subregions defined by the cluster analysis into the shelf and slope 
boxes in the greater NWA domain considered by Chen et al. (2020), generating a new set of boxes that in-
cludes 19 shelf boxes and 8 slope boxes (Figure 1b). The linearly detrended BTA is calculated for each of 
these newly generated shelf and slope boxes by removing the monthly climatology and linear trends (com-
puted over the period of 1993–2018), and these anomalies will be considered as potential predictors in the 
prediction models as explained in Section 3.2.

2.2. The GLORYS12v1 Ocean Reanalysis Data Set

Observations near the bottom of the water column on the NWA continental shelf are limited and discontin-
uous in time and space, and even sparser over the continental slope (Richaud et al., 2016). Thus, statistical 
prediction of the NES bottom temperature in this study is based on the GLORYS12v1 product (Lellouche 
et  al.,  2018), which is a global ocean eddy-resolving (1/12° horizontal resolution and 50 vertical levels) 
data assimilated hindcast from Mercator Ocean, covering the altimetry era (1993–2018) (Fernandez & Le-
llouche, 2018; Lellouche et al., 2018). The base ocean model is the Nucleus for European Modelling of the 
Ocean (Madec, 2008) driven by European Center for Medium-Range Weather Forecasts Interim reanalysis 
(Dee et al., 2011). Observations of delayed time sea level anomaly from all altimetric satellites, satellite SST 
from Reynolds 0.25° Advanced Very-High-Resolution Radiometer-only (Reynolds et al., 2007), sea ice con-
centration from the Centre ERS d'Archivage et de Traitement (Girard-Ardhuin et al., 2008), and in situ tem-
perature and salinity vertical profiles from Copernicus Marine Environment Monitoring Service (CMEMS) 
COriolis Re-Analysis v4.1 database (Cabanes et al., 2013), are jointly assimilated by means of a reduced-or-
der Kalman filter. A 3D-VAR scheme is employed to correct for slowly evolving large-scale temperature 
and salinity biases. Variables such as temperature, salinity, currents, sea surface height (SSH), mixed layer 
depth, and ice parameters are archived at daily and monthly interval, available at the CMEMS.

We have compared the GLORYS12v1 reanalysis data set with in situ observations of both surface and bot-
tom temperature collected by NOAA NEFSC. Because relatively few observations are available in NSGoM 
and BB boxes (box09 and 10; see blue dots in Figure S1), neither evaluation of the reanalysis data set nor 
investigation of predictability in these regions is performed. Results suggest that the GLORYS12v1 data set 
is highly consistent with observations over the NES on both seasonal and interannual time scales (Text S1 
and Figure S2). Hence, we use the bottom temperature from the GLORYS12v1 data set over the shelf regions 
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of the NWA together with the temperature at ∼200 m depth over the slope and open ocean (35°N–65°N, 
40°W–80°W). As discussed below, the exchange of water masses between the shelf and slope is mainly as-
sociated with boundary current variability such as GS meanders and WCRs. Temperature at ∼200 m depth 
captures these processes well and is considered in place of bottom values over the slope and open ocean. 
Detrended monthly bottom (or 200 m) temperature anomalies calculated within each subregion are used 
for our statistical prediction.

3. Statistical Prediction Models
Four statistical prediction models with a hierarchy of complexity are built to investigate the seasonal pre-
dictability of BTA on the NES.

3.1. Local Persistence Model

We first evaluate the predictability associated with the damped local persistence for each subregion, which 
can be considered a baseline for evaluating the skill of other prediction models. The local persistence model 
of BTA for a subregion i on the NES, where  1,2, ,8i , can be written as

        BTA BTA ,i it t c (1)

where t represents the target forecast month and   is the lead time. This equation illustrates that BTA of a 
subregion could be approximated by its own historical BTA initialized from the month of ( t ). The coef-
ficients   and c are determined from simple lagged linear auto-regression applied to the BTAi time series 
from GLORYS12v1. To avoid overfitting the statistical models to the reanalysis time series,   and c are cal-
culated via a k-fold cross-validation method, described in Section 3.5. Therefore,   and c are not constants 
but vary slightly between cross-validation segments.

3.2. The Persistence-Advection Model

In the local persistence model, the predictor is the BTA from the same box at the initialization month (  
months before target forecast month t ). The constraint on the choice of the predictor is relaxed in the second 
model, so that it can be chosen from any box on the NWA shelf and slope (Figure 1b), including the target 
predictand box itself. We call this second model, a persistence-advection model rewritten as

        BTA BTA ,i jt t c (2)

where the  BTA j t  represents the initialization at the month of ( t ) using BTA from subregion 
j, and j is not necessarily equal to i. Similar to the local persistence model (Section 3.1), the whole k-fold 
cross-validation process is applied to all combinations of subregion ,i j , forecast month t, and lead time . 
For a particular target predictand subregion i at the forecast target month t, any shelf and slope boxes (01–19 
and A–H) at   months lead can be chosen as the predictor. Among these 27 choices, the one that gives the 
highest prediction skill based on the anomaly correlation coefficient (ACC; Section  3.6) for each target 
month t and lead time   is chosen. This model is identical to the local persistence model when j i. Oth-
erwise, the model is meant to capture the predictability associated with advection from box j  to the target 
box i. Therefore, lagged correlation of BTA time series between the two boxes should be positive, which is a 
criterion applied when selecting the predictor.

One thing to note is that before settling on the model presented here, a multiple linear regression model 
was also considered by treating the nonlocal BTA as a separate additional predictor to the local persistence 
(cf., Jacox et al., 2019). This type of model forces the choice of a nonlocal predictor based on its relationship 
with the residual from local persistence. However, in most cases, the nonlocal predictor chosen by the mod-
el did not make physical sense, especially at shorter lead times when the local persistence term dominates. 
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Therefore, instead of a multiple regression model, our prediction model is developed in the form of a uni-
variate regression model by combining the local persistence and advective BTA from adjacent regions into 
a single predictor.

3.3. The Gulf Stream Index Model and NAO Index Model

We also considered indices of Gulf Stream position variability (GSIs) and the North Atlantic Oscillation 
Index (NAOI) as predictors for shelf bottom temperatures. The GSI or NAOI model can be written as

         BTA ; GSI or NAOI,i t X t c X (3)

where X  representing the GSI or NAOI.

We consider two different GSIs, both tracking meridional shifts in the GS position on monthly time scales 
from 1993 to 2018 (Figure  S3). First, a GSI is calculated based on SSH following Pérez-Hernández and 
Joyce (2014), reflecting the position variability of the GS main axis between 72°W and 52°W based on the 
monthly mean ¼° satellite-based gridded SSH from the CMEMS. The other GSI is calculated based on the 
subsurface temperature at 200 m depth (T200) following Joyce et al. (2009), reflecting the position variabil-
ity of the GS North Wall. Here, we use the EN4 quality-controlled gridded subsurface temperature (1° hori-
zontal resolution; available from 1950s to present) (Good et al., 2013), instead of temperature profiles from 
the World Ocean Database as was used in Joyce et al. (2009). A comparison of the two temperature-based 
GSIs is included in Text S2 and Figure S3. The monthly NAOI, which is based on a rotated EOF analysis 
(Barnston & Livezey, 1987), is obtained from the National Weather Service Climate Prediction Center. The 
time period spans from 1993 to 2018 and a linear trend is removed from each of them prior to each of their 
use as a predictor in our statistical model.

3.4. The Persistence-Advection Model With GSI or NAOI

We combine the persistence-advection model and the GSI/NAOI model by considering the GSIs or NAOI in 
addition to BTAs from neighboring regions, allowing these indices to compete with shelf/slope bottom tem-
peratures when predicting the NES bottom temperatures. This statistical prediction model exactly follows 
Equation 3 but includes a broader range of candidate predictors:

         BTA ; BTA , GSIs, or NAOI.i jt X t c X (4)

3.5. k-Fold Cross-Validation

We use k-fold cross-validation to avoid overfitting the prediction models to the GLORYS12v1 BTA time 
series. This is also a way to confirm that the statistical relationship between the predictor and predictand is 
stationary throughout the time series. If the statistical relationship is nonstationary, the prediction skill by 
the predictor will not be robust for the whole time series.

The basic idea of this method is to train the statistical model using a training time series while testing 
the relationship over the remaining time series. The detailed procedure is as follows: (a) evenly split the 
GLORYS12v1 BTA time series into k  (  12k  in this study) segments, each spanning 2–3 years, identifying 
one segment as the testing time series and the remaining – 1k  segments as training time period; (b) fit the 
prediction model to the reanalysis time series over the training time period, that is, obtain its parameters   
and c through linear regression; (c) apply the prediction model to calculate a predicted time series over the 
testing time period; (d) change the testing time period to another segment, repeating steps (b) and (c); and 
(e) combine all the piecewise linearly predicted (i.e., cross-validated) time series segments chronologically 
to construct a full prediction for the entire time period. The full prediction time series is then compared to 
the observed (i.e., GLORYS12v1) time series for the entire time period as illustrated in Section 3.6.
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3.6. Assessment of BTA Predictions

The skill of BTA prediction is assessed using the ACC and root mean square error (RMSE) between the 
cross-validated prediction (BTA) and GLORYS12v1 BTA time series, which are considered as functions of 
the target forecast month (t) and lead time in months ( ):
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where    BTA BTA ,t ,  BTA BTA t , and n is the number of years in the time series. Statistical signif-
icance of ACC is tested at the 95% confidence level via Student's t test, considering the effective degrees of 
freedom to account for autocorrelation (Bretherton et al., 1999). Statistical significance for the difference be-
tween two ACCs (resulting from two different statistical prediction models for the same t and  ) is also test-
ed at the 95% confidence level following Steiger (1980)'s method, taking into account the fact that the two 
correlations are based on a common time series, for example, the  BTA t  in our case (D. C. Howell, 2009).

In addition, we also evaluate predictions using the Brier Score (BrS), which is a measure of the average 
squared forecast probability error relative to the observed probability for a probability category over the time 
period (Brier, 1950). The BrS can also be expressed as a function of the forecast month (t) and lead time ( ):

   


 
2

1

1B ,ˆrS ,
n

i
t P P

n (7)

where P̂ and P are the predicted and observed probabilities of a warmer (or cooler) event, respectively, and 
n is the number of years in the time series. Values of the BrS range from 0 to 1, with smaller BrS indicating 
better model performance. Following Hervieux et al.  (2019), the probability categories we considered in 
this study are the upper and lower terciles of the temperature distribution, that is, P = 1/3 for the both 
categories.

To assess the probabilistic prediction skills of a prediction model in comparison to the baseline model (e.g., 
the local persistence model), we also calculated the Brier Skill Score (BSS), which compares the BrS of a 
prediction model to that of the local persistence model:

   
baseline model

BrSBSS , 1 ,
BrS

t (8)

where  BrS BrS ,t  and  baseline model local persistence modelBrS BrS ,t . A negative value of the BSS indicates 
poorer performance by the prediction model relative to the baseline model. If the BSS is zero, then the two 
models perform similarly, whereas a positive BSS value indicates the new model performs better than the 
baseline model.

4. Results
4.1. Local Persistence

On the NES, the baseline damped local persistence predictions of BTAs yield significant prediction skill 
in ACC (at 95% confidence level) for lead times up to several months (Figures 2a–2h). Generally, northern 
NES boxes (box05–08) exhibit longer persistence and smaller RMSE, compared to the southern shelf boxes 
(box01–04; Figures 2 and 3). For example, the BTAs persist up to ∼5 months in the NMAB (box03) and up to 
∼10 months in the DGoM (box07), and the mean RMSE across all forecast months and lead time is ∼0.9°C 
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Figure 2. The prediction skill indicated by the anomaly correlation coefficient (ACC; a–h) and root mean square error (RMSE; i–p) of the damped local 
persistence model in each subregion (shelf box01–08) on the Northeast U.S. shelf. The x-axis represents target forecast month (t), and y-axis represents lead 
months ( ). The gray dots in each panel indicate that the ACC is significant at the 95% confidence level.
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in the former and ∼0.5°C in the latter. This difference is likely due to differences in the regional settings, for 
example, bottom depths, mixed layer depths, and proximity to the GS between the two regions.

All eight subregions exhibit notable seasonal differences in prediction skill, with the forecast months corre-
sponding to the shortest/longest persistence varying from region to region. In general, persistence is min-
imal for winter forecasts (January-March) in every subregion except the DGoM and NEC (shelf box07 and 
08; Figure 3a), presumably a consequence of deep winter mixing driven by storms and atmospheric cooling. 
In contrast, persistence gradually increases during spring and summer forecasts, reflecting the preservation 
of winter BTAs underneath a stratified upper layer. For RMSE, the skill matrix in each subregion generally 
follows a seasonal pattern consistent with that for ACC (Figures 2i–2p), which suggests the higher the ACC, 
the lower the RMSE (Figure 3). Similarly, the probabilistic skills indicated by the BrS for upper and lower 
terciles exhibit the agreement in seasonal prediction patterns (Figures S4 and S5).
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Figure 3. The prediction skill indicated by the anomaly correlation coefficient (ACC; a–c) and root mean square error (RMSE; d–f) of the damped local 
persistence model in each subregion on the Northeast U.S. shelf (represented by different colors), averaged for (a, d) each target forecast month (t), (b, e) lead 
time ( ), and (c, f) initialization month ( t ‐ ) by averaging values in Figure 2 in the vertical, horizontal, or diagonal direction, respectively.



Journal of Geophysical Research: Oceans

For the SMAB region (box01), the shortest persistence (<1  month) of BTA from prior months is in the 
forecast month of January. Persistence increases in the following months and reaches its longest value 
(∼6 months) in July (Figures 2a and 2i), meaning that the BTA established in January can persist into July. 
Later in the summer, the persistence decreases to 5 months in August and September, followed by a sudden 
drop in October-December, which is likely associated with the onset of wind mixing in the fall (e.g., Castelao 
et al., 2008; J. Forsyth et al., 2018). The NMAB shows a similar pattern of persistence for the winter and 
spring forecasts, with a minimum persistence of 1 month in January and longest persistence of 4 months in 
May–July. However, the persistence of BTA remains roughly the same (up to 3–4 months) in the following 
months (August-December) (Figures 2c and 2k), consistent with the establishment of the subsurface Cold 
Pool water (<10°C) typically from spring to fall (Chen et al., 2018).

The two shelfbreak regions (box02 and 04), which are narrow strips aligned with the shelfbreak in the MAB, 
show irregular seasonal persistence patterns that are difficult to interpret and may not be robust (Figures 2b 
and 2d). As an example, the NSB region exhibits very limited persistence (1–3 months) across all forecast 
months, with isolated elevated skill for fall predictions with lead times of 4–8 months. Previous work in the 
region estimates very short time scales for predictability based on mooring data from the Nantucket Shoals 
Flux Experiment (Yuan et al., 2004). We will not examine predictability in these regions using the other 
statistical models.

As previously mentioned, BTAs in the northern boxes (box05–08) exhibit generally longer persistence 
and smaller RMSE compared with the MAB subregions (Figures 2 and 3). These four subregions can be 
grouped into two categories based on the seasonal patterns of persistence. The first group includes the GB 
and WSGoM (box05 and 06), where both exhibit the shortest persistence (∼1 month) for forecasts in Janu-
ary/February (similar to the southern boxes) and the longest persistence for forecasts in late fall (reaching 
9–10 months lead time, Figures 2e and 2f). This result suggests the importance of late-winter/early-spring 
temperature in determining the BTA in the following summer and fall in these two regions. The prediction 
skill for forecasts in the fall (September-December) is not as consistently strong as the skill achieved in sum-
mer forecasts across multiple lead times, reflective of a transitional period between the prior summer and 
the following winter forecasts. The shift to shorter prediction time scales for winter forecasts (January-Feb-
ruary) coincides with a similarly abrupt transition in the forcing over the region, that is, the onset of winter 
storms and cold outbreaks (e.g., J. Forsyth et al., 2018). In contrast, the DGoM and NEC regions both exhibit 
a shifted seasonality with minimum persistence in May and April, respectively (Figures 2g and 2h). It is 
likely that for these two deepest subregions, where winter mixed layers do not reach the bottom (based on 
the same GLORYS12v1 data set), the winter mixing affects the bottom temperature indirectly with delays, 
for example, through advection and convection from the shallower neighboring regions. Also, in compar-
ison to the shallower regions, the breakdown of the surface stratification in the fall has limited impact on 
the persistence of BTA in the DGoM and NEC. As a result, the anomaly signal can last from early-spring to 
the end of the following winter (Figures 2g and 2h).

The prediction skill may be summarized by averaging the skill shown in Figure 2 in the vertical, horizontal, 
and diagonal directions, respectively (Figure 3). The results further illustrate the seasonality and regional 
differences discussed above. Overall, the DGoM stands out when comparing the prediction skill of the local 
persistence model relative to lead time (Figures 3b and 3e). On average, predictions in the DGoM based on 
local persistence gradually decrease (increase) in ACC (RMSE) from 0.96 (0.18°C) at 1-month lead to about 
0.26 (0.67°C) for the 12-month lead (Figures 3b and 3e). Among all forecast months, winter months in 
DGoM have the highest prediction skill (ACC = 0.72, RMSE = 0.41°C in March) and summer months have 
the lowest prediction skill (ACC = 0.32, RMSE = 0.56°C in July; Figures 3a and 3d). For the DGoM, BTA 
initiating in May is the most stable and constant predictor for BTA predictions across the rest of the months, 
providing an average prediction skill of about 0.71 (RMSE = 0.46°C; Figures 3c and 3f).

The NEC region exhibits a similar BTA persistence pattern to the DGoM, although with decreased predic-
tion skill and slightly shifted seasonality (Figures 2h and 2p). The highest prediction skill (ACC = 0.52, 
RMSE = 0.48°C) regardless of lead month is achieved in February, 1 month earlier than the DGoM region; 
and the lowest prediction skill (ACC = 0.24, RMSE = 0.55°C) is obtained 2 months earlier than the DGoM 
in May (Figures 3a and 3d). This is mainly because the NEC region is less isolated than the DGoM, influ-
enced more directly by changes on the slope. Similarly, the most stable and constant BTA signal initiates 
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from March, which is also 2 months earlier than that in DGoM (Figure 3c). Prediction skill in the remaining 
subregions is minimum in early winter (January or February), and the BTA initiating in February or March 
is also the most stable and constant predictor for the following months in these regions.

4.2. The Persistence-Advection Model

The persistence-advection model allows BTA signals from other regions to compete with the local persis-
tence to achieve more skillful predictions (Section 3.2), presumably through advection. When local persis-
tence dominates, the persistence-advection model is identical to the local persistence model (i.e., j i in 
Equation 2). In other words, the persistence-advection model will either improve the prediction skill or it 
will be equal to the local persistence model.

We begin by comparing the prediction skill of the persistence-advection model with the local persistence 
model from three different perspectives (relative to the forecast month, lead month, and initialization 
month). The results suggest that a significant improvement in prediction skill has been achieved using 
the persistence-advection model in all shelf subregions (Figure 4). On average, the NMAB shows the most 
improvement (∼0.32) among the subregions, especially for October forecasts (∼0.47, averaged over all lead 
months) and for lead times of 8 months (∼0.50, averaged over all forecast months). The DGoM shows the 
least improvement (∼0.11 on average), as the local persistence model already showed strong performance.

We find two types of predictability barriers (indicated by a line of minimum predictability), based on the 
prediction skill revealed by the persistence-advection model (Figures 5 and 6). One is along the diagonal, 
that is, dependent on the initialization month, and the other is aligned vertically, that is, dependent on the 
forecast month. Diagonal predictability barriers are visible in the NMAB, GB, and WSGoM (box03, 05, and 
06), all of which indicate that BTA from any shelf/slope box initiating in the fall months (October–Decem-
ber) does not improve the prediction skill for these three target regions. This predictability barrier likely 
reflects the effect of strong mixing in late fall/early winter eroding existing anomalies. The vertical predicta-
bility barrier is identified in the DGoM, with very limited prediction skill for the May–June forecast months, 
which was already apparent in the local persistence model (Figure 2g). As noted, predictability in the DGoM 
did not improve much with the persistence-advection model (Figures 6b and 6e).

Most of the nonlocal predictors are located along upstream advective paths and/or within neighboring sub-
regions. In the SMAB region, local persistence only dominates at 1 or 2 month(s) lead for nearly all forecast 
months (Figure 5a). For predictions with a 2–7 months lead, the neighboring SSB (box02), upstream NMAB 
and GB (box03 and 05), slope box F, and southern Gulf of St. Lawrence (SGSL; box13) are better predictors 
providing an increase of ∼0.4 in prediction skill of ACC and an decrease of ∼0.3°C in RMSE on average 
(Figures 5d and 5g). For predictions with a lead of 7–12 months, the best predictor for winter-spring is slope 
box G (west of the Grand Banks) initiated in the preceding June/July, and the best predictor for May/June is 
BTA from the northern Labrador shelf (box19) (Figures 5d and 5g), with considerable improvement relative 
to local persistence also found in the BSS for lower and upper terciles (Figures 5k and 5m). However, not all 
of these predictors can be explained by advection, as the lead months are not always consistent with advec-
tion time scales. For example, it normally takes more than 1 year for an anomaly signal to advect from the 
northern Labrador shelf to the SMAB (cf., Xu et al., 2015), longer than the 7–11 months lead time revealed 
by the model (Figure 5d).

Local persistence also dominates at shorter lead times (less than 4 months) in the NMAB region. Nonlocal 
predictors improve the skill of late summer and fall forecasts (August-December) by ∼0.6 on average. Simi-
larly, the most effective predictors include neighboring and upstream shelf regions (box02, SSB; box04, NSB; 
box05, GB; and box12, ESS), and especially the slope regions B and C adjacent to the GB and SS, which ex-
hibit the largest improvement with regard to ACC increase, RMSE decrease, and BSS values for both upper 
and lower terciles (Figures 5e, 5h, 5k, and 5n). Winter-spring forecasts (January-June) are also improved by 
the northernmost nonlocal BTA signals (Labrador shelf box18 and 19, slopes F and G), which again may not 
be necessarily interpreted as advective signals.

Fall forecasts in the GB and WSGoM regions are dominated by local persistence, with lead months up to 8 
or 9 months, forming a nearly right-triangular pattern (Figures 5c and 6a; also Figures 2e and 2f). Within 
these triangles, there is little improvement in prediction skill (<0.2) gained from nonlocal predictors, but 
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distinct improvement is achieved for winter and spring forecasts. The best nonlocal predictors mainly in-
clude neighboring or upstream boxes. For the GB region, BTA from shelf subregions SSB, NSB, and ESS 
(box02, 04, and 12) and slope boxes B, E, and F are better predictors relative to local persistence (Figure 5f). 
For the WSGoM region, the nonlocal predictors are in the neighboring GoM shelf boxes—DGoM (box07) 
and NEC (box09), and upstream GSL subregions (box13 and 14), and slope G off the Tail of the Grand Banks 
(Figure 5j), which are all located along the mean advective pathway of the Labrador Current.

The DGoM has the largest dominance and highest prediction skill from local persistence among all six sub-
regions and has the minimum improvement in prediction skill when considering nonlocal BTA predictors 
(Figures 4 and 6). The largest improvements (∼0.3 increase) are realized for summer and fall forecasts (Au-
gust–December), when considering BTA in slopes C–E as nonlocal predictors (Figure 6e). In the NEC, the 
prediction skill has been increased by up to ∼0.6 relative to the local persistence. These nonlocal predictors 
also suggest the role of advection, with contributions from upstream shelf box11 (western SS) and slope 
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Figure 4. As in Figures 3a–3c, but for the prediction skills in anomaly correlation coefficient (ACC) of the persistence-advection model (a–c) and the 
prediction skill improvement (d–f) relative to the local persistence model in subregions of shelf box01, 03, 05, and 06–08 (represented by different colors), 
averaged for each forecast month (a, d), lead month (b, e), and initialization month (c, f).
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boxes C–E (near the SS and the Tail of the Grand Banks) along the advective pathway of the slope currents 
(Figure 6f).

Overall, considering nonlocal BTA predictors in the persistence-advection model significantly improves 
prediction skill relative to the local persistence model, and the best nonlocal predictors are predominantly 
located in neighboring boxes or upstream regions, indicative of an advective pathway. Interpretation of 
these nonlocal predictors is further discussed in Section 5.1.

4.3. Prediction With Gulf Stream and NAO Indices

We also consider using large-scale oceanic and atmospheric indices as potential predictors for NES bottom 
temperatures (Section 3.3). We first use the T200-based GSI as the sole predictor for shelf bottom tempera-
tures. The GSI model suggests that the BTA on the NES has a seasonally dependent relationship to the GS 
position (Figure 7). In the SMAB region, the T200-based GSI provides very limited prediction skill for all 
forecast months except the fall, that is, September and October, with lead time of 3–8 months. The values 
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Figure 5. The prediction skill for the southern three subregions, that is, (top row) box01, southern Mid-Atlantic Bight (SMAB); (middle row) box03, northern 
Mid-Atlantic Bight (NMAB); and (bottom row) box05, Georges Bank (GB), represented by the anomaly correlation coefficient (ACC) prediction skill of the 
persistence–advection model (a–c), as well as the skill improvement relative to the local persistence model based on the ACC (i.e., persistence–advection 
minus local persistence) (d–f), root mean square error (RMSE; g–i), and the Brier Skill Score (BSS) for upper (j–l) and lower (m–o) terciles. The x-axis in each 
panel represents the forecast month (t) and y-axis the lead time ( ). The darker the color, the better the model performance in all panels. In panels (a)–(c), the 
markers (gray dots, light gray, and black triangles) indicate the ACC is significant at the 95% confidence level. In particular, the gray dot indicates the prediction 
skill of the persistence–advection model is identical to the local persistence model, while the triangle (either light gray or black) indicates that the persistence-
advection model has higher prediction skill in ACC than the local persistence model. The black triangle further indicates the difference in ACC between the two 
models is significant at the 95% confidence level. In panels (d)–(f), the corresponding predictor box, ranging from 19 shelf boxes (1–19) and 8 slope boxes (A–H) 
is indicated for those statistically significant cases with a nonlocal predictor. The black predictor box numbers/characters indicate that the ACC improvement is 
significant at 95% confidence level, while those light gray numbers/characters are not. In panels (g)–(o), the gray dots and the predictor box numbers are based 
on the corresponding ACC, thus identical to those in (d)–(f).
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of the statistical significant ACC are about 0.55 on average, which are only slightly higher than those of the 
local persistence model, and most of the increased ACC values are not significantly different from those of 
local persistence at the 95% confidence level (Figure 7a). In the NMAB region, the fall forecast months (Sep-
tember-November) also show significantly higher prediction skill relative to the local persistence model, 
especially with lead time of 4–10 months (Figure 7b).

In the GB region, the GSI is a good predictor for summer and fall forecast months across multiple initiating 
months and lag times, although only one case leads to statistically significant improvements relative to the 
local persistence model (November forecast based on the GSI in April, 7-month lead; Figure 6c). In addition, 
there is a distinctive GSI signal initiating in April, that becomes a statistically significant predictor when 
predicting the May-to-November BTA in the GB (Figure 7c). This GSI signal initiating in April is also identi-
fied in the DGoM and NEC regions (Figures 7e and 7f). In contrast, BTA predictability in the WSGoM based 
on GSI is very limited (Figure 7d), suggesting that water properties in shallow regions will be influenced 
more by the coastal circulation and local atmospheric forcing than by a meridional shift in the GS.

As previously mentioned, the April GSI is a statistically significant predictor for forecasting BTA in the 
DGoM and NEC from May to the following March. However, the prediction skill is not significantly differ-
ent from that of local persistence in both regions (Figures 7e and 7f). Significant increases in prediction skill 
are achieved by the GSI model for forecasts in the NEC region, when predicting the summer-fall (July-Oc-
tober) BTA at a lead of 7–10 months (Figure 7f).

We also tested two other indices—the SSH-based GSI and the NAOI for shelf BTA predictions (Figure S6). 
Interestingly, both of these indices provided very limited prediction skill for all forecast months at lead 
months less than 1 year. Especially when comparing the two GSIs, the SSH-based GSI does not show any 
statistical relationships as the T200-based GSI does with the NES BTAs. We suspect this is because the 
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Figure 6. Same as Figure 5, but for the northern three subregions: (a) box06, western shallow Gulf of Maine (WSGoM); (b) box07, deep Gulf of Maine 
(DGoM); and (c) box08, Northeast Channel (NEC).
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T200-based GSI directly reflects the water temperature variability associated with the meridional shift of 
the GS North Wall, including the effects of WCRs and GS meanders, while the SSH-based GSI is not a direct 
measurement of temperature and primarily captures the meridional shift of GS main axis. In addition, due 
to proximity, the T200-based GSI is more relevant to the NES temperatures. Similarly, the NAOI offers very 
limited prediction skill, except in the SMAB and NMAB regions for winter forecasts (January and Decem-
ber) at 1–2 months lead, which implies the impact of NAO on local atmospheric forcing over the shallow 
regions in MAB.

As the persistence-advection model and the T200-based GSI model provide significant improvement in 
prediction skill relative to the local persistence model, we combine them by treating the T200-based GSI as 
another box in the persistence-advection model (Section 3.4). Results suggest that this persistence-advec-
tion with GSI model results in limited improvement relative to the original persistence-advection model, 
and the improved prediction skill is not significantly different at the 95% confidence level in nearly any NES 
subregions (Figure S7).
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Figure 7. The prediction skill of the 200-m temperature-based Gulf Stream path index (GSI) model in subregions of (a) box01, southern Mid-Atlantic Bight 
(SMAB); (b) box03, northern Mid-Atlantic Bight (NMAB); (c) box05, Georges Bank (GB); (d) box06, western shallow Gulf of Maine (WSGoM); (e) box07, deep 
Gulf of Maine (DGoM); and (f) box08, Northeast Channel (NEC). Grids with markers (triangles or dots) on them mean that the anomaly correlation coefficient 
(ACC) is significant at the 95% confidence level. Specifically, gray dots represent the ACC that is not larger than that of the local persistence model; while 
triangles denote a higher ACC relative to the local persistence model and black triangles indicate this increase in ACC is significant at the 95% confidence level.
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5. Summary and Discussion
The seasonal predictability of BTA on the NES was investigated based on a hierarchy of statistical predic-
tion models, evaluated using deterministic and probabilistic metrics (ACC, RMSE, BrS, and BSS) relative 
to the local persistence model. The predictors considered were the local BTA (local persistence model) and 
nonlocal BTAs (i.e., from nearby or upstream shelf and slope subregions), the T200- and SSH-based GSIs 
(representing the GS meridional shift), and the NAOI (representing basin-wide atmospheric variability over 
the North Atlantic). Among these, the combination of local and nonlocal BTAs (persistence-advection mod-
el) leads to significant improvements in prediction skill relative to the local persistence model. The use of 
T200-based GSI also improved the prediction skill of BTAs on NES, but the improvements were confined to 
fall forecast months and were not significantly better than the skill achieved by the persistence-advection 
model. Overall, using nearby or upstream BTA's as predictors in the persistence-advection model provides 
better results than those using GSI.

In the remainder of the study, we will discuss various aspects of our statistical BTA prediction, including 
the physical interpretation of the persistence-advection model results, role of the large-scale variability, 
additional predictability from the linear long-term trends, and comparison with the SST predictability. As 
our original motivation of the study is to address the scientific needs of NOAA's NEFSC, we will conclude 
the paper by discussing the implications of our BTA prediction results on the fisheries management appli-
cations along with suggesting a further simplified persistence-advection model for the potential end-users.

5.1. Interpretation of Nonlocal BTA Predictors

For all of the NES subregions, the best nonlocal predictors in the persistence–advection model are primarily 
located in neighboring or upstream regions (Figures 5 and 6; Section 4.2), suggesting advective pathways 
along the NWA shelf or slope to the NES. In order to explore this interpretation further, we modified the 
persistence-advection model to predict the BTA for a given target NES subregion (as before), considering 
the BTA time series at each grid point in the GLORYS12v1 data set as candidate predictors, rather than 
regional average BTAs calculated within each box. The goal is to visualize the pathways associated with the 
predictability in each target region. To do that, we consider the maximum prediction skill achieved at each 
grid point for a target region at different lead times, highlighting the maximum potential for prediction, 
regardless of the forecast month. In other words, for a given lead time, we plot the maximum skill achieved 
at each grid point among the 12 possible values from 12 forecast months. Doing so also allows us to examine 
any subjectivity in the statistical models associated with the definition of the shelf and slope boxes. In the 
following, we discuss the source regions of prediction for the NEC, WSGoM, and NMAB at a lead time of 1, 
4, 7, and 10 months (Figures 8 and 9).

The spatial pattern of maximum prediction skill for the NEC (Figures 8a–8d) highlights nonlocal predictors 
from the WSS (box11) and from the adjacent continental slope regions (within C–E, also see Figure 6f). At 
a lead time of 1 month, results clearly suggest that the highest prediction skill (>0.9) comes from the NEC 
itself, which agrees with the results in Section 4.2 that local persistence dominates at shorter lead times. The 
spatial maps also show that the DGoM and WSS basins as well as the slope regions offshore of the SS and 
GB also contribute to skillful predictions of BTAs in the NEC at 1-month lead. At a lead time of 4 months, 
the prediction skill within the NEC decreases signaling a decrease in local persistence, while skill remains 
high in the slope region off the SS. One of the more intriguing features that has emerged from this analysis 
is that the region of best predictors gradually shifts upstream along the slope with increasing lead time, 
ultimately reaching the Tail of the Grand Banks (Figure 8). The evolution of the maximum prediction skill 
pattern confirms our interpretation of the persistence-advection model for the NES in Section 4.2, that is, 
the nonlocal predictability is associated with the subsurface equatorward advection of the Labrador slope 
waters into the NEC along the continental slope.

As expected, prediction of BTAs in the DGoM (Figure S8) exhibit patterns similar to those described for the 
NEC, with connections to predictors in the deep basins on the SS and over the slope off the SS. The predic-
tion skill in these nonlocal regions is lower than that of local persistence at shorter time lead (Figures S8a 
and S8b). While at longer time lead, BTAs on the slopes C–E exhibit slightly higher prediction skills for 
BTAs in the DGoM as suggested in Section 4.2, compared to the local persistence (Figures S8c and S8d).
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Unlike the DGoM and NEC regions, the best nonlocal predictors for WSGoM (box06) are mostly located 
along the shallow shelf coastal boundary current regions, including NSGoM (box09), and southern Gulf of 
St. Lawrence (SGSL; box13) (Figures 8e–8h). Interestingly, the spatial patterns of maximum prediction skill 
for WSGoM look very different compared with those for the NEC at shorter lead times (Figures 8a–8d), indi-
cating two totally different source waters for the two regions. Source waters for the WSGoM can be traced to 
the fresh coastal waters along the inner-shelf off Nova Scotia. However, advection influences cannot explain 
the pattern of high prediction skill in the downstream shallow regions like GB, Nantucket Shoals, and inner 
MAB shelf. The covariability with the WSGoM, as well as disappearance of the advective signal at longer 
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Figure 8. Spatial patterns of the maximum prediction skill when each grid point is used as a predictor in the persistence-advection model for the target box08, 
Northeast Channel (NEC; a–d) and target box06, western shallow Gulf of Maine (WSGoM; e–h) (highlighted by cyan lines) at a lead time of (a, e) 1 month, 
(b, f) 4 months, (c, g) 7 months, and (d, h) 10 months. Note that the maximum skills are chosen among the predictions for 12 forecast months at the given lead 
time for each grid point. In each panel, locations that have prediction skills not significant at 95% level are masked with black dots. For those locations that have 
prediction skills above 95% level, but whose bottom temperature anomaly negatively correlated with the target region, are covered with green dots (where are 
discarded when picking the best predictor). Bathymetry contours of 200, 2,000, and 4,000 m are plotted as solid gray lines.
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lead times, suggests that the BTAs in WSGoM are dominated by atmospheric forcing, which also affects the 
downstream regions at the same time.

The best nonlocal predictors for the MAB and GB regions include the shallow shelf regions in the MAB, 
GB, GoM, and SS (Figures 9 and S8e–S8h). For example, the entire MAB shelf and GB exhibit very high 
skill at shorter lead times for predicting BTA in the NMAB (box03) (Figures 9a and 9b), consistent with the 
advective pathways for shelf waters as well as their coherent temperature variations. In addition, at longer 
lead times, the most skillful predictors for BTAs in the NMAB and GB include the slope region offshore of 
GB (slope box B) (Figures 9b–9d), suggesting the importance of GS meanders (e.g., Andres, 2016; G. G. Ga-
warkiewicz et al., 2012) and rings (Chen et al., 2014; Zhang & Gawarkiewicz, 2015). The highest prediction 
skill obtained in the slope region off the GB is mainly for fall forecast months (September–December) with 
a lead time of 4–9 months (not shown). This indicates that spring and summer subsurface temperature 
anomalies on the slope are associated with BTAs on the NMAB in the following fall. This is consistent with 
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Figure 9. As in Figure 8, but for the target box03, northern Mid-Atlantic Bight (NMAB; a–d) and box01, southern Mid-Atlantic Bight (SMAB; e–h).
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the peak months for WCR formation in the slope sea, occurring from May 
to July (Gangopadhyay et al., 2019).

5.2. Predictability of the Large-Scale Indices

Among the three large-scale indices, the T200-based GSI provides the 
most skillful predictions for the NES bottom temperature, with specific 
forecast and initialization months. For example, the T200-based GSI ini-
tiating in April produces the most skillful forecasts of BTA in nearly all of 
the northern NES subregions, except MAB subregions and WSGoM. This 
is very interesting since it suggests that there is a common response of 
bottom temperature among these NES subregions to the GS meridional 
shift in a particular month. To visualize the spatial distribution as well as 
to examine any subjectivity associated with the definition of the shelf and 
slope boxes, we calculated the prediction skill when the T200-based GSI 
in April is used as a predictor for each spatial point in this region, at lead 
times of 1, 4, 7, and 10 months (Figure 10).

Spatial maps suggest that the WSS consistently has the most signifi-
cant prediction skill produced by the April GSI, across all lead months. 
At 1-month lead (i.e., for the target forecast month of May), mainly the 
outer-shelf (>60-m isobath) from the SMAB to WSS and a small area of 
the slope off WSS exhibit notable response to the April GS variability, 
with a maximum prediction skill of 0.82 on the WSS (Figure 10a). Three 
months later for the forecast month of August (GSI lead by 4 months), 
prediction skills of BTA are enhanced in the WSS and adjacent slope with 
high skill expanding into the DGoM basins, while in MAB the enhanced 
skill becomes insignificant moving onshore (Figure  10b). High skill in 
the GoM and WSS continues and affects the GB and NMAB at 7-month 
lead prediction (Figure 10c). For forecasts of shelf BTA in February (GSI 
lead by 10 months), GSI-related prediction skill is largely weakened, and 
the WSS and Jordan basin are the only two regions that still have sig-
nificant response to the April GS variability. This is not surprising since 
vertical mixing strongly influences BTA during winter months. In con-
trast, winter mixing does not directly influence the BTA in the deep ba-
sins of the GoM and WSS, and the forecast skill is higher in these regions 
(Figure 10d).

Over all, the T200-GSI-related predictability exhibits distinct spatial and 
seasonal preferences. In particular, summer-to-fall (August–November) 
BTAs on the WSS, DGoM, and GB have the most notable response to the 
GS meridional shift in spring. The fact that the persistence–advection 
model already incorporates these regions in the pathways of the GS-re-

lated signal as the nonlocal predictors explain why the T200-GSI does not provide additional significant 
improvement over the original persistence-advection model.

Other large-scale indices, for example, NAOI, are also reported to provide predictability for temperature 
on the NES, however, on longer time scales and over different time periods. Xu et al. (2015) found that the 
NAOI is negatively correlated (r = −0.47) with SST in the GoM at a lead time of 4 years based on the NOAA 
Optimum Interpolation SST version 2 data set over the period of 1982–2010, indicating the NAO signal 
takes about 4 years to propagate from the Labrador Sea to the GoM. However, this statistical relationship no 
longer exists over the period of this study (1993–2018) using the same data sets, which indicates the non-
stationarity of the NAO impact on the NES temperature over the recent decades. Besides, Mountain (2012) 
found that the percentage of Labrador slope water entering the GoM at depth through the NEC is negatively 
correlated with the NAOI with a lag of 2 years, based on temperature/salinity measurements for the peri-
od of 1964–2008. Again, our longer-term (1–5 lead years) analysis over the period of 1993–2018 does not 
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Figure 10. Similar to Figures 8a–8d, but for spatial patterns of prediction 
skill when the T200-based Gulf Stream path index (GSI) initiating in April 
is used as a predictor in the persistence–advection model for each spatial 
point at a lead time of (a) 1 month, (b) 4 months, (c) 7 months, and (d) 
10 months.
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suggest any statistically significant relationships between the NAOI and BTA in either GoM or NEC (not 
shown).

We also tested the predictability of annual-mean BTA on the NES using the annual AMOC index (Caesar 
et  al.,  2018) over the period of 1993–2018. Results suggest only the NEC BTA has negative correlations 
(r = −0.56 to 0.59) with the AMOC index at lags of 0–2 years (not shown). However, the prediction skill 
measures below the 95% confidence level following our assessment method. In addition, the predictability 
associated with the AMOC index may also be correlated with those from the GSI or the nonlocal upstream 
shelf/slope boxes.

5.3. Prediction Skills With Linear Trends

The statistical models developed in this study are all based on linearly detrended BTA time series, in order 
to avoid spurious correlations due to linear trends. However, since the NES region has experienced notable 
warming over the past few decades (e.g., Chen et al., 2020; J. S. T. Forsyth et al., 2015; Pershing et al., 2015), 
we could also expect some prediction skill to result from this trend. Therefore, we have added the observed 
linear trend back into the time series predicted by the persistence-advection model (Section 4.2) in order to 
quantify the increase in prediction skill due to long-term warming (Tommasi, Stock, Alexander, et al., 2017). 
Results suggest that including the linear trends increases the prediction skill by roughly 0.15 in the GB, 0.13 
in the WSGoM and NEC regions, and about 0.1 in the DGoM and MAB subregions, and these increases 
have distinct seasonal preferences (Figure S9). For example, the prediction skill in the SMAB is improved by 
about 0.32 for October forecasts but results in almost no improvement in June. Similarly, the prediction skill 
for the GB is improved by roughly 0.25 in winter/late fall (December-March), while the prediction skill for 
summer BTAs only improves by about 0.05 (Figure S9a). The skill gained from including the linear trend is 
larger at longer lead times, increasing by up to 0.27 at 12-month lead for GB (Figure S9b). When the linear 
trend is included, the prediction skill from the persistence–advection model reaches 0.50 in the SMAB to 
0.76 in the DGoM on average.

5.4. Simplification of the Persistence-Advection Model

The most skillful predictions from the persistence-advection model involve a variety of nonlocal predictors 
which perform best at different target months and lead times. However, in order for the model to be useful 
to end-users, it is desirable to simplify the model to include fewer predictors that can produce reasonable 
predictions for most target months and lead times. By combining information from Sections 4.2 to 5.1, we 
are able to identify 1–2 best nonlocal predictors to be used in addition to local persistence for a simplified 
version of the persistence–advection prediction model (Figure 11). For example, for the NEC, we identify 
the combined slope region offshore of the SS (slope regions C and D) in addition to local persistence. The 
selection rule is to keep only those physically reasonable predictors that maximize the persistence–advec-
tion. The chosen nonlocal predictors for each subregion are GB (box05) for SMAB, slope box B for NMAB, 
and GB, NSGoM (box09) for WSGoM, and the combined slopes C and D for DGoM and NEC, as shown in 
Table S1. The seasonal prediction skill for the simplified prediction model in each subregion and the differ-
ence relative to the original persistence–advection model are shown in Figure 11. The smallest reduction 
in skill is observed in the DGoM and NEC (∼0.2) while the largest decreases are observed in the simplified 
NMAB model, especially in the upper left corner (behind the diagonal predictability barrier) of the predic-
tion skill matrix (Figure 11e). Although the simplified model loses some skill, it still provides significant 
improvements over the local persistence, and it is easy to adapt.

5.5. Comparison With SST Predictability

We apply the same statistical models to the seasonal prediction of SSTA on the NES. Results suggest that the 
local persistence of SSTA is much more limited in time (1–3 months in the MAB regions and 1–4 months 
in the GoM regions) compared with BTA, and with fewer regional differences (Figure S10). This is pre-
sumably due to the strong influence of atmospheric forcing, which is correlated across larger spatial scale 
than oceanic processes and is less persistent. Another difference is that the SSTA prediction skill pattern 
is more irregular than that of BTA. For some forecast months in late summer or fall, prediction skill is not 
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significant even at a lead time of 1 month. Further, the prediction skill abruptly decreases with increasing 
lead time over most of the year, and isolated peaks appear frequently at 6–11 months lead. These irregular 
patterns highlight the complex physical processes, for example, freshwater input from rivers and atmos-
pheric variability, that influence SSTA on the NES. Among all eight regions, the GB and the NSB have the 
longest local persistence (up to ∼4 months), however, because of the lack of tidal mixing and the challenge 
in resolving shelfbreak dynamics in the reanalysis data set, the result for these two regions should be con-
sidered with caution.

As with the BTA predictions, considering predictors of SSTA from other regions does improve the predic-
tion skill, especially for predictions in the GoM in winter and fall (not shown). However, the increased 
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Figure 11. As in Figure 7, but for the simplified persistence–advection model (only selecting one or two best nonlocal predictors for each Northeast U.S. shelf 
subregion: box05-Georges Bank (GB) for target box01-southern Mid-Atlantic Bight (SMAB); slope box B for target box03-northern Mid-Atlantic Bight (NMAB) 
and target box05-GB; box09-northern shallow Gulf of Maine (NSGoM) for target box06-western shallow Gulf of Maine (WSGoM), and the combined slope 
boxes C and D for target box07-deep Gulf of Maine (DGoM) and target box08-Northeast Channel (NEC)) and the difference from the original persistence–
advection model with values meaning the decreased prediction skills in comparison to the original persistence–advection model.
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prediction skill (by ∼0.2 on average) is not comparable to the skill achieved in the BTA models and the 
improved skill patterns are still irregular.

Like the BTA models, SSTA prediction models show a distinct response to the T200-based GSI, and very lim-
ited response to the other two indices (SSH-based GSI and the NAOI), although the prediction skill patterns 
are different (not shown). Among all subregions, SSTA in the GB and NEC regions have the most significant 
response to the T200-based GSI, mainly in the late summer-fall forecast months at 2–9 months lead, largely 
consistent with the BTA prediction in the same regions. By comparison, predictions based on the T200 GSI 
in the NMAB, WSGoM, and DGoM are significant in November only. Unlike the BTA prediction in the 
SMAB, SSTA has almost no predictability from the T200-based GSI. Similarly, incorporating the T200-GSI 
as an extra predictor in the persistence–advection model does not improve the prediction skill significantly 
at the 95% confidence level.

Overall, SSTA on the NES exhibit much lower seasonal predictability than the BTA, regardless of the statis-
tical model chosen. Future work exploring prediction skill from other predictors, for example, air-sea heat 
fluxes, would be beneficial.

5.6. Living Marine Resource Applications

While great progress has been made to incorporate environmental factors into fisheries management and 
in particular, stock assessments, operationalizing this process has remained elusive because of some key 
challenges. A critical component of fisheries stock assessment models is the short-term (i.e., 1–3 years) 
population forecasts and catch advice for management. Operationalizing an assessment model with an en-
vironmental effect requires that (a) the relationship between the oceanographic variable and a population 
process must be established, (b) the oceanographic variable must also be observed or forecasted with rea-
sonable skill and (c) have sufficient lags to be useful for management advice. The degree of predictability of 
the oceanographic variable needed to improve management advice from an assessment model also depends 
on the spatiotemporal scale of the oceanographic variable and intrinsic biological factors (e.g., strength of 
relationship, life history, population process affected, stock status, exploitation history, length of time series, 
and initial value of the oceanographic variable; Haltuch & Punt, 2011) and therefore is case-specific. Great 
progress has been made in many regions understanding the effects of environmental variables on popula-
tion-level processes particularly with the advent of ocean observation technology, and the Northeast U.S. 
is no exception (Table S2). Here, prediction skill ranged from 0.2 to 0.9 for specific combinations of region, 
forecast month, lead time, and fish stock that could be used for Northeast U.S. stock assessments (Table S2; 
Figures 5 and 6). In general, there has been a critical need for predictions of bottom variables and greater 
lead times for bottom temperature predictions that the work above provides.

Two types of lags commonly occur that may increase the feasibility of conducting environment-linked fish-
eries assessments by reducing the lead time necessary for predictions. First, there is often a lag between the 
terminal year of fish population data and when the assessment is conducted. This arises because age-based 
assessments rely on labor-intensive sampling of fishery and survey catch to determine fish age, weight, and 
maturity. In contrast, in situ and remotely sensed physical oceanographic data can often be processed in 
near real time and therefore can be collected much closer to the assessment date. As an example, the South-
ern New England-Mid-Atlantic winter flounder assessment conducted in September 2020 used biological 
data through 2019 (NEFSC, 2020). The temperature–recruitment relationship depends on January-March 
estuary bottom temperature, which means that the temperature in the first projection year, 2020, has al-
ready been observed by the assessment date. The January–March estuary bottom temperature in the second 
projection year, 2021, would need to be forecasted using data through August 2020. Thus, a 5–7-month 
bottom temperature forecast enables a 2-year population projection (Table S2). Second, there is also often 
a lag between the oceanographic variable and its effect on the population process. For example, recruit-
ment in year t frequently depends on the spawning biomass and environmental conditions in the previous 
year, – 1t . These lags will be case-specific, and therefore the performance of predictions from an environ-
ment-linked assessment should ideally be tested using simulations in a management strategy evaluation 
(Gaichas et al., 2016; Punt et al., 2014, 2016).
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Early ecological forecasts based solely on lags between the oceanography and ecology and that were con-
strained to using SST were hindered by lead times of near real time to ∼4 months (Payne et al., 2017). Pre-
diction products like those developed here can potentially extend lead times to 12 months in some seasons 
and locations on the NES. In addition to the substantial advance in improving fisheries stock assessment, 
ocean temperature predictions can also be used to make and improve ecological forecasts. Existing eco-
logical forecasts that predict opening of fisheries (Mills et al., 2017) support dynamic spatial management 
(Dunn et al., 2016; Maxwell et al., 2015) and that aim to reduce marine mammal and other nontarget spe-
cies bycatch (Hazen et al., 2018; Hobday et al., 2019; Howell et al., 2008, 2015) could potentially be more 
effective with prediction products developed herein.

Data Availability Statement
The GLORYS12v1 ocean reanalysis data set is available at the Copernicus Marine Environment Monitor-
ing Service (CMEMS) (https://resources.marine.copernicus.eu/?option=com_csw&view=details&prod-
uct_id=GLOBAL_REANALYSIS_PHY_001_030). The NOAA NEFSC hydrographic data set is in the World 
Ocean Database maintained by NOAA National Centers for Environmental Information (https://www.ncei.
noaa.gov/products/world-ocean-database). The SSH data are available at CMEMS (https://resources.ma-
rine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OB-
SERVATIONS_008_047). The subsurface temperature EN4 data set is available at the Met Office Hadley 
Centre (https://www.metoffice.gov.uk/hadobs/en4/). The monthly NAO index is obtained from the Nation-
al Weather Service Climate Prediction Center (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
pna/nao.shtml). The data of NOAA Optimum Interpolation SST used in this study are available at NOAA 
Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.high-
res.html). The regression coefficients   and c of the persistence–advection prediction model in each subre-
gion on the NES are publicly available at Figshare (https://doi.org/10.6084/m9.figshare.14445690.v1).
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