
1. Introduction
Climate variations in the Pacific have long been of interest as considerable evidence has emerged of a decades-
long change in the Pacific atmosphere and ocean. Superimposed on a long-term trend in sea surface temperatures, 
the Pacific climate is substantially affected by its large internal variability, that is, Interdecadal Pacific Oscil-
lation and El Niño-Southern Oscillation. Due to the large size of the Pacific basin, these prominent modes of 
Pacific climate variability modulate the global mean surface temperature, such as the warming “hiatus” between 
1998 and 2012 (Dai et al., 2015; England et al., 2014; Kosaka & Xie, 2013; Meehl et al., 2016; Trenberth & 
Fasullo, 2013).

Given this background of strong internal variability, isolating the Pacific response to anthropogenic climate 
change has been a major challenge. Greenhouse gases (GHGs) and anthropogenic aerosols (AAs) are both impor-
tant radiative forcing agents that drive global and regional climate change. On a global scale, AA forcing can partly 
compensate for the warming induced by GHGs (Bonfils et al., 2020; Irving et al., 2019; Shi et al., 2018; Wang 
et al., 2016), which increases the difficulty of separating these forced signals. Post-World War II there was a large 
increase in aerosol emissions. It has been found that AAs can give rise to the cooling in the global mean surface 
temperature (Smith et al., 2016; Stott et al., 2000; Wilcox et al., 2013). From the energetic perspective, AAs 
concentrated in Northern Hemisphere (NH) can lead to a hemispheric energy imbalance which has been shown to 
drive a southward shift of the Inter-Tropical Convergence Zone and Hadley Cells (Chung & Soden, 2017; Hwang 
& Frierson, 2013). Moreover, the emissions of AAs during the historical period are nonmonotonic in time and 
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non-uniform across the globe, which can give rise to characteristic forced spatial patterns at the surface (Deser 
et  al.,  2020; Shi et  al.,  2022). An intensification of Pacific trade winds, Walker circulation, and wind-driven 
ocean circulation is found to be partially attributed to AA forcing since the 1990s (Allen et al., 2014; England 
et al., 2014; Takahashi & Watanabe, 2016). In contrast, Oudar et al. (2018) found that the observed global cooling 
in the early 21st century is attributable to internal variability, and the intensified trade winds are not robust in 
AA-forced simulations over 1998–2012. Therefore, the role of AAs in historical climate change remains unclear.

The North Pacific has attracted much attention recently in terms of the effect of AAs. AA forcing might give 
rise to a weakening of the Aleutian low (Dow et al., 2021; Smith et al., 2016) and a negative phase of the Pacific 
Decadal Oscillation (PDO) from 1981/1998 to 2012 (Dittus et al., 2021; Smith et al., 2016). Moreover, it has 
been found that the AA forcing from extratropics can lead to substantial changes in SST in the North Pacific 
extratropical regions (Diao et al., 2021; Kang et al., 2021; Luongo et al., 2022; Shi et al., 2022). In particular, 
Shi et al. (2022) have shown the AA-induced patterns at the sea surface based on single-forcing simulations, but 
the responses in the interior ocean remain unclear. Hence, using the pattern recognition method, we here focus 
on separating the subsurface patterns of forced ocean temperature responses in the North Pacific from its strong 
internal variability. The zonal-mean pattern is investigated here to remove the internal variability to some extent.

2. Data and Methods
2.1. Large Ensemble Simulations

The two climate models with large ensemble simulations (more than 10 members) used in our analysis are 
the Community Earth System Model version 1 (CESM1) and the Canadian Earth System Model version 5 
(CanESM5), in which the AA effect can be isolated from their single-forcing ensembles.

For CESM1, the all-forcing large ensemble (LENS, 40 members) and all-but-one-forcing large ensemble (XAER, 
20 members) are used (Deser et al., 2020; Kay et al., 2015). Then, we use the method from Deser et al. (2020) 
to obtain the AA and GHG single-forcing ensemble (20 members each), respectively (Equation 1). We call these 
derived single-forcing ensembles the CESM1-AER and CESM1-GHG. Each ensemble member is driven by the 
identical single external forcing but exhibits different internal variability.

AERmember = (XAERmember − XAERensmean) + (LENSensmean − XAERensmean) (1)

CanESM5 has the largest ensemble size in the CMIP6 single-forcing experiments compared with other CMIP6 
models. We use 15 members from its historical aerosol-only simulation (hist-aer) and 15 members from the 
GHG-only simulation (hist-GHG) in which the subsurface variables are available (Swart et al., 2019). Please note 
that the different experimental designs used in two models, that is, single-forcing versus all-but-one-forcing, can 
give rise to potential differences in aerosol effects if there are substantial non-linearities in the system. In this 
study, we show that the results from the two models are quite consistent. The effect of the differences in experi-
mental design merits further careful investigation.

For each model, we also use the preindustrial control simulation (1,800  years in CESM1, 1,000  years in 
CanESM5) to calculate the PDO index, which is defined as the leading principal component of the area-weighted 
SST anomalies in the North Pacific (20°N–70°N, 110°E−100°W; Deser et al., 2010). Subsurface temperature is 
then regressed on the PDO index to obtain the pattern associated with internal variability.

Here, we focus on the upper 1,000 m temperature change in the North Pacific, 0° to 60°N, from 1950 to 2014. We 
interpolate all the outputs from the two models to a regular 1° × 1° latitude-longitude grid.

2.2. Subsurface Temperature Observations

It is challenging to attribute observed climate variability to AAs on the timescale of one or two decades (Schmidt 
et al., 2014). Here we use the optimal interpolated EN4.2.2 potential temperature product (EN4-g10 and EN4-c14) 
from the Met Office Hadley Center and also the recent product from the Institute of Atmospheric Physics (IAP; 
Cheng et al., 2017) since they cover long periods in the subsurface observations. There are different versions with 
different methods to correct the bias from expendable bathythermograph (XBT) and mechanical bathythermo-
graph measurements (Cheng et al., 2014; Gouretski & Cheng, 2020; Gouretski & Reseghetti, 2010).
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The data collection, bias correction methods, and gap-infilling methods will create some differences in the 
objective analyses from these observationally-based datasets. Nevertheless, we focus on their common features 
extracted from the S/N-maximizing pattern filtering methods (see below). The data are on a 1° × 1° grid from the 
surface to 1,000 m depth from 1950 to 2020.

2.3. Signal-to-Noise-Maximizing Pattern Filtering

The goal of S/N-maximizing pattern filtering is to extract the anomaly patterns, for which different ensemble 
members agree on the temporal evolution (Allen & Smith, 1997; Delsole et al., 2011; Déqué, 1988; Schneider 
& Griffies, 1999; Schneider & Held, 2001; Ting et al., 2009; Venzke et al., 1999; Wills et al., 2018, 2020). This 
method has been shown to give a clearer forced response than the simple ensemble mean given the limited ensem-
ble member (Wills et al., 2020). In this method, the extracted patterns are associated with the maximization of the 
ratio of signal (e.g., variance of ensemble mean) to the total variance (from all ensemble members). Full details 
of this pattern-based method are given in Supporting Information S1 and Shi et al., 2022.

3. Results
3.1. AA-Forced Patterns From Model Simulations

The first two S/N-maximizing patterns of CESM1-AER North Pacific zonal mean temperature anomalies and 
their time series are shown in Figure 1. Only for these two modes, S/Ns are much greater than 1. For the rest of 
the modes (not shown), the S/Ns are less than one, and the explained variances are less than 1% without showing 
a clear long-term temporal evolution. Therefore, we regard the first two patterns as forced patterns (FPs) driven 
by AA forcing.

FP1 shows a broad subsurface cooling (Figure 1a) with a quasi-monotonic time evolution (Figure 1c). The increas-
ing rate slows down since 2000, which can be explained by the emission regulation. On the other hand, FP2 shows 
a broad cooling in the upper layer with a much stronger signal in the extratropical region (Figure 1b). The cooling 
signal mainly penetrates along the steep isothermals in the mid-latitudes. The ventilated thermocline facilitates 

Figure 1. The first two forced patterns (FPs) and time series from CESM1 AER simulations. (a, b) FPs (FP1 and FP2) of North Pacific zonal mean temperature from 
1950 to 2014. The mean temperature is shown as contours. (c, d) Standardized time evolution for FP1 and FP2, respectively. (e, f) Regressions of aerosol optical depth 
on each time evolution.
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the subduction of these cooling signals. In addition, subsurface warming occurs between 10°N–30°N on the 
equatorward flank of the subtropical gyre, where the meridional gradient of mean ocean temperature is positive. 
The locations of the negative and positive anomalies relative to the mean pattern indicate that this pattern is asso-
ciated with the displacement of isotherms due to AA forcing (see Section 3.2). The time series for FP2 exhibits 
an obvious nonmonotonic evolution, evolving in opposite directions before and after the 1980s. To examine the 
robustness of the results between models, we calculate the two FPs from CanESM5 AER single-forcing runs 
(Figure S1 in Supporting Information S1). Its second mode captures a common pattern with a clear nonmono-
tonic temporal feature. Please note there are some differences between the two models, such as cold anomalies in 
FP1 are stronger and poleward intensification in FP2 is much more muted in CanESM5, which deserve further 
investigation.

The regressed pattern of aerosol optical depth (AOD) on FP1 time series (Figure 1e) picks up the geographical 
transition effect of AA forcing (Shi et al., 2022). This AOD regression pattern shows the transition of the main 
emissions sites of AA from North America/Europe to East/South Asia, and also the dominant role of the emis-
sions in Asia in the net aerosol increase during this period. The AOD regression pattern on the time evolution 
of FP2 shows the primary sources of AA forcing located in eastern North America and Europe, regions that 
underwent early industrial development and then a decline in emission-associated regulations implemented in the 
mid-1980s. This extratropical AA forcing in FP2 is responsible for the substantial oceanic temperature change in 
the North Pacific to the north of 30°N (Figure 1b).

Although FP1 explains more variance than FP2, the monotonic increase of GHG forcing can largely offset and 
even overwhelm the effect of FP1, making the separation of FP1 and GHG signals difficult. Hence, the effect of 
the nonmonotonically evolving FP2 may be more detectable in the observed historical record. In the following 
section, we will focus on FP2 and discuss the possible physical mechanisms to explain its characteristic zonal 
mean pattern.

3.2. Physical Mechanisms Associated With Extratropical Aerosol Forcing

We regress the wind stress anomalies and their curl on the time series of FP2 (Figure 2). The trade winds to the 
north of the equator and westerly winds are both enhanced relative to the mean wind fields (Figure 2a). This zonal 
mean wind stress increase gives rise to anomalous Ekman downwelling within 10°–35°N (Figure 2b), driving 
broadly distributed downwelling wind stress curls in the mid-latitudes (Figure  2d). Consistent with previous 
studies, a clockwise meridional atmospheric overturning circulation response over the tropics is evident, which 
is a strong signal of a southward shift of the Hadley Cell (Figure 2f), in response to the NH cooling driven by 
aerosol forcing. This shift is consistent with the enhanced trade winds to the north of the equator (Figure 2a) 
and also gives rise to a southward shift of the wind-driven ocean gyres. The southward shift of tropical surface 
winds and associated enhanced Ekman downwelling together contribute to the subsurface warming on the equa-
torward flank of the subtropical gyre shown in Figure 1b. It is worth noting that these regression patterns reflect 
the nonmonotonic evolution of the second mode. Thus, the responses are in the opposite direction after the 
mid-1980s.

The regression of surface heat flux on the FP2 time series shows a widespread heat loss in the North Pacific 
(Figure  2c). The heat loss is substantial in the subpolar regions, at similar latitudes to the aerosol sources 
(Figure 1f), which contributes to the poleward enhanced cooling in the North Pacific (Figure 1b). This poleward 
enhanced cooling increases the meridional SST gradient, which further affects the tropospheric responses (e.g., 
Xu & Xie, 2015). The regression of the zonal mean of zonal atmospheric circulation over the North Pacific 
shows an enhancement of mid-latitude jet streams and a clear poleward shift in the upper troposphere. These 
atmospheric responses are quite consistent between the two models (Figure S2 in Supporting Information S1). 
Thus, a poleward shift of the westerly jet can be driven by extratropical aerosol forcing in North America and 
Europe, likely through the strengthened meridional SST gradient. In this nonmonotonic mode, the responses 
of the Hadley Cell and N. Pacific jet in the upper troposphere to AA forcing show opposite directions, which 
is consistent with the result from Diao et al. (2021). They concluded that the shift of the jet stream is attributed 
to aerosol forcing from South/East Asia, rather than from North America and Europe. In this study, there is a 
tremendous temperature drop around 40°–45°N (Figure S1b in Supporting Information S1), which is to the north 
of the jet core (∼30°N). Therefore, based on the thermal wind relation, the enhanced SST meridional gradient in 
North Pacific can produce a strengthening of zonal winds whose maxima are located to the north of the jet core.
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3.3. Results From Observations

As the mid-1980s are the turning point of AA-induced FP2, we calculate the observed trends of North Pacific 
zonal mean temperature for 1950–1985 and 1985–2020, respectively (Figure 3). The former 36-year trend shows 
a significant cooling spot in the mid-latitudes, which penetrates mainly along the isotherms (Figures  3a, 3c, 
and 3e). In addition, the subsurface warm anomalies are found on the equatorward flank of the subtropical gyre, 
similar to the AA-induced FP2 from the model simulations. For the latter period, the strong warming in the upper 
layer dominates the overall zonal mean pattern with weaker subsurface cooling on the equatorward flank of the 
subtropical gyre (Figures 3b, 3d, and 3f). The contrasting trend patterns also appear in the AA single-forcing runs, 
while the deviations across the ensemble members reflect the impact of background noise (Figures S3 and S4 in 
Supporting Information S1).

To further show the time evolutions of the observed subsurface temperature, we choose two boxes to calculate 
the averaged temperature anomalies (Figure 3a). The temperature difference between the two boxes shows a clear 
nonmonotonic evolution in all three datasets (Figure 3g). The -1xPDO index also exhibits a similar long-term vari-
ability but is not able to fully capture the subsurface temporal evolution, especially for the first and last 10 years. 
We would like to note that this observed PDO can include both the external-forced and internal components. 
The results from CESM1 simulations for the same boxes are shown in Figure 3h. The GHG effect is relatively 

Figure 2. Regressions of various fields on the FP2 time evolution in Figure 1d. (a, c) Regressions of zonal wind stress, wind stress curl, and surface heat flux 
anomalies on FP2 time evolution from CESM1-AER (black curves) and CanESM5-AER (red curves). (a, c) show the zonal mean of regression and panel b shows the 
zonal sum of regression of wind stress curl within the North Pacific (0°–60°N, 100°E−100°W). Negative values in panel c denote heat losses from the ocean. The mean 
fields are shown as dashed curves. (d) Map of regression of surface wind stress (arrows) and wind stress curl (shadings) from CESM1-AER. (e, f) Regression of North 
Pacific atmospheric zonal mean velocity and global meridional overturning streamfunction, respectively, on FP2 time evolution from CESM1-AER. Positive values in 
panel f denote clockwise circulations. The corresponding mean fields are shown as contours.
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Figure 3. Changes in North Pacific temperature from observations and CESM1 simulations. (a–f) 1950–1985 and 
1985–2020 trends of zonal mean temperature from observations. Climatological isotherms are shown as contours. Stippling 
indicates regions exceeding 95% statistical significance from the two-tailed t-test. Panel (g) The 5-year running mean of 
temperature difference between the average temperature in 25°N–45°N, 50–300 m (green box in panel a and 12°N–25°N, 
200–600 m (magenta box) from observations. The 5-year running mean of -1xPDO index from the WMO Regional Climate 
Center is shown as the blue curve. (h) Temperature difference between two boxes in panel a from CESM1-AER (AER1 and 
AER2 from FP1 and FP2, respectively) and CESM1-GHG (GHG1 from its first mode). Dashed curves in panel h are the 
results of a simple ensemble mean of subsurface temperature, <X>.
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monotonic (red curve in Figure 3h). Importantly, we find that the nonmonotonic feature is predominantly driven 
by AER2 (reconstructed temperature from FP2 based on Equation S6 in Supporting Information S1; cyan curve 
in Figure 3h). Hence, the existence of AER2 stemmed from the AA forcing in NH extratropical region can to 
some extent affect the nonmonotonic trend pattern discovered in observations (Figure 3g).

Although the nonmonotonic feature can be detected, the magnitudes of piecewise trends shown in Figure 3 do 
not match the AA-induced FP2 well, especially over 1950–1985. To increase the signal-to-noise, we also apply 
the pattern recognition method to the three observational datasets to extract the common features from them. In 
this case, it is gridding and bias corrections differences and not internal variability, which is treated as noise. In 
addition, we expect the observations to reflect both internal variability and all external forcings together.

As we focus on the nonmonotonic feature here, the zonal-mean temperature fields are detrended during 1950–
2020 before the pattern recognition analysis. The first mode (EP1) shows strong warming in the upper layer 
with a poleward amplification and a relatively weak cooling on the southern flank of the subtropical gyre 
(Figure 4a). The time series of EP1 shows piecewise, long-term trends before and after the 1980s (Figure 4c), 
which resembles the time series based on the AER2 in Figure 3h. The second extracted mode (EP2) shows a clear 
tripole pattern (Figure 4b), and the corresponding time series consists of a recognizable multidecadal variabil-
ity. The S/N ratios in these two modes are much larger than 1. For the remaining modes (not shown), no clear 
long-term signal is found. The pattern correlation between FP2 and EP1 (Figure 1b vs. Figure 4a) is relatively 
high (r = 0.80 for CESM1, r = 0.64 for CanESM5) compared with the correlations between FP2 and the other 
extracted observed patterns (Table S1 in Supporting Information S1). Hence, EP1 potentially reflects the aero-
sol fingerprint. In addition, we also conduct the low-frequency component analysis based on the method from 
Wills et al. (2018), and find the results are quite consistent with the SST responses from their work (Figure S5 in 
Supporting Information S1).

Figure 4. First two extracted patterns and time evolutions from three observational datasets. (a, b) Extracted patterns of 
North Pacific zonal mean temperature from 1950 to 2020. Climatological isothermals are shown as contours. (c, d) Time 
evolutions for the extracted patterns. The thick curve denotes the 10-year running mean.
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While it is remarkable that the observed zonal-mean temperature trends in the North Pacific bear similarity to 
the AA-induced FP2 determined from the model simulations, it is unclear how much the observed multidecadal 
trends reflect internal variability, especially associated with the PDO. To show the subsurface pattern associated 
with internal variability alone, we regress the zonal mean temperature from the pre-industrial control run on 
its PDO index (Figure S6 in Supporting Information S1). The regression shows a tripole pattern that is broadly 
similar to EP2 from observations. Responses from the control run are more intense in extratropical regions as the 
PDO index is obtained from 20°N–70°N (Deser et al., 2010). The pattern correlation between the PDO pattern 
from models and EP2 is relatively high (r = 0.64 for CESM1, r = 0.63 for CanESM5; see Table S2 in Supporting 
Information S1). Hence, EP2 is likely to reflect the unforced PDO variability.

4. Summary and Discussion
In this study, we have extracted the influence of anthropogenic forcings on the North Pacific subsurface ocean 
temperature change since 1950 based on the single-forcing large ensembles of simulations. Despite the confound-
ing effects of internal variability and GHG-forced signals, the AA-forced signals can be extracted using an 
S/N-maximizing pattern filtering method. Our analysis indicates that aerosol emissions from North America and 
Europe can cause a clear nonmonotonic time evolution and a characteristic zonal mean pattern of the subsurface 
ocean temperature within the North Pacific. This response is found in two different climate models with large 
ensemble simulations, and can be used to understand the AA-induced fingerprints in observations.

Time series analyses, such as that of global/regional mean SSTs, are limited in being able to separate the forced 
signals from internal noise. The situation is even worse when the observed record is sparse and internal varia-
bility is strong and complex. In this study, the ocean subsurface temperature pattern of forced response provides 
additional information to better characterize the difference between internal modes and changes driven by anthro-
pogenic forcing. For instance, FP2 from the AA simulations is distinct from the PDO-related pattern from the 
preindustrial run. There are substantial surface heat flux changes in the North Pacific subpolar regions and also 
tropospheric circulation changes, which leave “fingerprints” in the interior ocean: The increasing surface heat 
loss in the subpolar regions (prior to ∼1985) leads to strong ocean surface cooling which then subducts into the 
thermocline. The surface wind change, associated with the equatorward shift of the Hadley cell, strongly affects 
the temperature change on the equatorward flank of the subtropical gyre. Importantly, after ∼1985, these changes 
reverse.

Disentangling the roles of internal variability and external forcing in historical climate change remains challeng-
ing (e.g., Hua et al., 2018; Qin et al., 2020). We have focused on the nonmonotonic temporal evolution of AAs 
and their induced zonal mean pattern of subsurface ocean temperature. Here we propose a way to use the obtained 
FPs from models to compare with the observed changes, although the observed patterns are still open to inter-
pretation. As a caveat, there are some differences between the patterns obtained from models and observations 
on the regional scale, such as the weaker observed subsurface response at around 500 m, which deserves further 
investigation. Another useful extension of our work should include the pattern-based fingerprint analysis (e.g., 
Santer et al., 2018) to understand potential interactions between GHG and AA forcing and how these show up in 
observations versus models. For the atmospheric circulations, the Hadley cell and jet over the North Pacific shift 
in opposite directions. The shift of the Hadley cell is attributable to the interhemispheric energy imbalance, and 
the shift and enhancement of the jet stream are found to be associated with the tremendous temperature change in 
the North Pacific subpolar region to the north of the jet core. These results are consistent with Diao et al. (2021) 
but are found to be induced by aerosol emissions from North America and Europe. Rather than the monotonic 
effect of increasing aerosol emissions widely discussed in previous studies, we show that these atmospheric circu-
lation responses have a clear nonmonotonic feature that further affects ocean responses.

Data Availability Statement
The Community Earth System Model project is supported primarily by the National Science Foundation and 
the outputs are available from https://www.cesm.ucar.edu/community-projects/lens/data-sets and https://www.
earthsystemgrid.org/dataset/ucar.cgd.ccsm4.output.html (Deser et al., 2020; Kay et al., 2015). CanESM5 large 
ensemble outputs are available on the Program for Climate Model Diagnostics and Intercomparison's Earth 
System Grid (https://esgf-node.llnl.gov/search/cmip6/) (Swart et  al.,  2019). IAP data are available at: https://
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climatedataguide.ucar.edu/climate-data/ocean-temperature-analysis-and-heat-content-estimate-institute-atmos-
pheric-physics (Cheng et al., 2017). EN4 data are available at: https://www.metoffice.gov.uk/hadobs/en4/ (Good 
et al., 2013).
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Details about Signal-to-noise-maximizing Pattern Filtering  19 

First, we calculate the zonal mean of the annual mean subsurface temperature in the 20 
North Pacific for each ensemble member. The temperature anomalies are calculated relative to 21 
the mean of 1950-2014. The obtained temperature anomalies are divided by the temporal 22 
standard deviation at each depth for the respective ensemble member to give equal weight to the 23 
temporal variability vertically in the following Empirical Orthogonal Function (EOF) analysis, 24 
and form the ensemble data matrix X, in which the data from each ensemble member are 25 
concatenated in the time dimension. We then conduct the EOF analysis on the matrix X. The 26 
matrix is weighted by the square root of the grid cell area. We define linear combinations of 27 
eigenvectors (ak) from the EOF analysis: 28 

𝐮! =	 $	
𝐚!
#!
		𝐚"
#"
	⋯	𝐚#

##
	& 	𝐞!	                          (S1) 29 

where uk is the pattern from the linear combination of N leading EOF eigenvectors. 𝜎! is the 30 
square root of the i-th EOF eigenvalue, and ek is a coefficient vector that is determined as that 31 
which maximizes the S/N ratio as described below. In this analysis, we pick N = 50 retaining 32 
around 99% of the total variance.  33 

A corresponding time series tk can be defined by projecting uk onto the ensemble data 34 
matrix X.  35 

𝐭" = 	𝐗𝐮" 	                                            (S2) 36 

To find the robust fingerprint pattern, uk, we need to find the coefficient vector ek, which 37 
gives the maximum ratio of the ensemble mean signal to the total variance, which can be written 38 
as: 39 

𝑠" =	
〈𝐭!〉"〈𝐭!〉	
𝐭!"𝐭!

                                              (S3) 40 

The angle bracket represents the ensemble mean. Thus, the numerator in (S3) denotes the 41 
forced signal and the denominator denotes the total variance from all ensemble members.  42 

After plugging (S1) and (S2) into (S3), we get 43 
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𝐞!"		(	

𝐚$
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                (S4) 44 

Since the ak is the EOF eigenvector of X, the covariance in the denominator of (S4) is 45 
equal to 1. Therefore, (S4) turns out to be a maximization problem for which sk and ek can be 46 
solved.  47 

The S/N-maximizing patterns (vk), sorted by sk, are then determined by the regression of 48 
the ensemble data matrix X onto time-series tk: 49 

𝐯𝒌 =	𝐗𝑻𝐭" =	 [	𝜎.𝐚.		𝜎/𝐚/ 	⋯	𝜎0𝐚0	]	𝐞"            (S5) 50 
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It should be noted that in this framework, the temporal loadings of the forced patterns are 51 
required to be orthogonal, while the spatial patterns are not orthogonal in space. The standard 52 
deviation at each depth removed at the beginning is multiplied back on these patterns to obtain 53 
the responses with the correct magnitude. 54 

After extracting the forced patterns, we can examine the history of externally forced 55 
responses to AAs by constructing its evolution from each forced mode, in which S/N = sk /(1 - sk) 56 
> 1.  57 

〈𝐓〉 	= 	 〈	𝐭!	𝐯!$	〉               (S6) 58 

For instance, when k = 1 or k = 2, <T> represents the reconstruction of the temperature 59 
field due to the first or second forced mode.  60 

 61 
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 62 

Figure S1. The first two forced patterns and time series from CanESM5 AER simulations. a-b 63 
First and second forced patterns of North Pacific zonal mean temperature from 1950 to 2014. The 64 
mean temperature is shown as contours. In a, the thin, green curve denotes the -0.2˚C temperature 65 
response, and the thick curve denotes the -0.3˚C temperature response. c-d Standardized time 66 
evolution for these forced patterns, respectively. 67 

  68 
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 69 

 70 

Figure S2. Regressions of various fields from CanESM5 AER on the time evolution of the 71 
second forced pattern (FP2) in Figure S1d. a Map of regression of surface wind stress (arrows) 72 
and wind stress curl (shadings). Negative shadings denote downwelling responses. b-c 73 
Regression of North Pacific atmospheric zonal velocity and global meridional overturning 74 
streamfunction on the time evolution of the FP2, respectively. Positive values in c denote 75 
clockwise circulations. The corresponding mean fields are shown as gray contours. 76 
  77 
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 78 

Figure S3. 1950-1985 trends of the zonal-mean North Pacific temperature from individual 79 
members and ensemble mean of CESM1-AER. Climatological isotherms are shown as contours. 80 
Stippling indicates regions exceeding 95% statistical significance from the two-tailed t-test. 81 
  82 
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 83 

Figure S4. 1985-2020 trends of the zonal-mean North Pacific temperature from individual 84 
members and ensemble mean of CESM1-AER. Climatological isotherms are shown as contours. 85 
Stippling indicates regions exceeding 95% statistical significance from the two-tailed t-test. 86 
  87 
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 88 

Figure S5. First two leading patterns and the associated time evolutions based on the low-89 
frequency component analysis (15-year lowpass cutoff; Wills et al. 2018) using the mean of 90 
three observational datasets. The zonal-mean temperature fields are detrended over 1950-2020 91 
before the low-frequency component analysis, to detect the modes with nonmonotonic temporal 92 
evolution. 93 

 94 

  95 
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 96 

 97 

Figure S6. Regression of North Pacific temperature from CESM1 and CanESM5 preindustrial run 98 
on the PDO index obtained from the same run. Climatological isotherms are shown as contours. 99 

  100 
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Table S1. Uncentered pattern correlations (absolute values) between the second forced pattern 101 
(FP2) from the two models and the extracted patterns (EPs) from observations.  102 

Observed patterns FP2 from  
CESM1-AER 

FP2 from 
CanESM5-AER 

EP1 0.80 0.64 

EP2 0.18 0.23 

EP3 0.07 0.08 

EP4 0.28 0.19 

EP5 0.04 0.09 

 103 

Table S2. Uncentered pattern correlations (absolute values) between the unforced PDO regression 104 
pattern from the preindustrial control simulations (PI) and the extracted patterns (EPs) from 105 
observations.  106 

Observed patterns PDO pattern from 
CESM1 PI 

PDO pattern from 
CanESM5 PI 

EP1 0.13 0.25 

EP2 0.64 0.63 

EP3 0.15 0.23 

EP4 0.39 0.31 

EP5 0.01 0.03 

 107 
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