
1. Introduction
Sea surface temperature (SST) anomalies averaged over the North Atlantic region exhibit alternating warm and 
cold periods on multidecadal timescales, known as the Atlantic Multidecadal Variability (AMV) or Atlantic 
Multidecadal Oscillation. The societal relevance of predicting AMV is underscored by linkages to multidecadal 
variations across multiple Earth system processes both within and beyond the North Atlantic (Zhang et al., 2019; 
Ruprich-Robert et  al.,  2021, and references therein). However, the dominant driver of AMV remains highly 
contested; leading contenders include ocean dynamics (Arzel et al., 2022; Kim et al., 2018; Zhang et al., 2019), 
atmospheric dynamics (Cane et al., 2017; Clement et al., 2015), and variations in external forcing (L. N. Murphy 
et al., 2021; Klavans et al., 2022). Each of these drivers imply different timescales of predictability, and the short 
observational record further complicates the disentanglement of their contributions.

Yet the subpolar North Atlantic (SPNA), the center of action for AMV, is considered among the most predicta-
ble locations for SST and ocean heat content across all ocean basins, with skill extending to decadal timescales 
(Buckley et  al.,  2019; S. Yeager, 2020). Mean wintertime mixed-layer depths reach over 1,000 m within the 
SPNA, resulting in large heat capacity that translates to long persistence and memory of SST anomalies (Deser 
et al., 2003; Holte et al., 2017). The SPNA encompasses key deep-water formation sites of the Atlantic Merid-
ional Overturning Circulation (AMOC), and has been linked to multi-year to multi-decadal predictability, both 
locally and in other regions such as the tropical Atlantic (Dunstone et al., 2011; Menary et al., 2015).
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Current state-of-the-art approaches for decadal prediction of the climate system are often computationally inten-
sive and highly sensitive to initial conditions, or constrained by assumptions of linearity in simplified models 
such as the Linear Inverse Model (Huddart et al., 2017; Meehl et al., 2022; Smith et al., 2019; Zanna, 2012). 
An alternative pathway emerges from neural networks (NN) and their ability to capture nonlinear processes and 
transformations (Hornik et al., 1989; Toms et al., 2020). NNs have successfully outperformed dynamical fore-
casts of El Niño-Southern Oscillation (ENSO) at interannual timescales (Ham et al., 2019) and detecting transi-
tions between positive and negative states of the Pacific Decadal Oscillation (Gordon et al., 2021). Furthermore, 
recent developments of techniques such as Layer-wise Relevance Propagation (LRP) provide a way to peer into 
the “black box” of the NNs and identify the critical features for skillful predictions (Gordon et al., 2021; Toms 
et al., 2020; Wang et al., 2022). In this work, we investigate the potential of applying NNs to predicting North 
Atlantic sea surface temperatures (NASST) and use LRP to examine the relative importance of atmospheric and 
oceanic sources of predictability across multiple timescales.

2. Methods and Data
2.1. Data Sets

We use the Community Earth System Model 1 (CESM1) Large Ensemble Simulations (LENS) based on a 
fully-coupled global climate model with nominal 1-degree resolution (Kay et al., 2015). We focus on a single 
model to investigate if NNs can learn the physics of NASST variability, without confounding factors and biases 
that arise from cross-model comparisons. CESM1 LENS features 42 members under the same historical-era 
forcing from the Coupled-Model Intercomparison Project 5 (CMIP5), but with slightly different atmospheric 
initial conditions, representing a comprehensive range of intrinsic climate variability. We use the period common 
across all ensemble members (1920–2005), totaling of 3,612 years of data for training, validation, and testing of 
the NNs.

To investigate if the predictability learned from CESM1 translates to a realistic data set, we test the NNs on an 
observational data set, the Hadley Center Sea Ice and Sea Surface Temperature (HadISST) version 1 that includes 
monthly data between 1870 and 2022 at 1-degree resolution (Rayner et al., 2003). Since the NNs require inputs of 
the same size, we re-grid HadISST to match the CESM1 resolution using bilinear interpolation.

2.2. Prediction Objective

The input features are 2-D annual mean snapshots of atmospheric and/or oceanic predictors (discussed in 
Section 2.3) over the North Atlantic (80 to 0°W, 0 to 65°N), and the output prediction is the state of NASST (either 
positive, negative, or neutral) a given number of years later (Figure 1). The NASST index is the area-weighted, 

Figure 1. Schematic diagram of the NN prediction of NASST state using an example NASST− event in 1965 from ensemble 
member 37 of CESM1 LENS (Panel a). The snapshot of a selected predictor from 25 years prior (1940) is given to a FNN 
(Panel b), which outputs a prediction of the NASST state.
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annual mean SST anomaly over the North Atlantic, essentially the unfiltered AMV Index (Ting et al., 2009). 
Considering recent work that suggests the importance of external forcing in driving AMV (L. N. Murphy 
et al., 2021; Klavans et al., 2022), we also examine differences in predictability of NASST with and without 
external forcings such as the anthropogenic warming trend, defined by the 42-member ensemble mean (referred 
to as forced and unforced, respectively). This is performed prior to subsetting the data for training, validation, 
and testing.

We focus on predicting extreme NASST states due to its strong scientific and societal impacts. A 1-standard devi-
ation (σ) threshold is used to separate the NASST into positive, negative, and neutral states (similar results are 
obtained using tercile thresholds). The threshold was selected to be high enough to distinguish extreme NASST 
anomalies, but low enough to permit sufficient samples for training. Framing this as a classification rather than 
a regression problem facilitates the application and interpretation of LRP output (Toms et al., 2020). To prevent 
biases toward predicting a specific class simply due to its frequency of occurrence, following standard practice 
(Buda et al., 2018; Drummond & Holte, 2003; Gordon et al., 2021), we subsample across CESM1 members set 
aside for training and validation so that there are equally 300 events per NASST state (see Section 2.4).

2.3. Atmospheric and Oceanic Predictors

To evaluate the importance of atmospheric versus oceanic drivers for NASST variability, we train networks to 
predict the NASST state given 2-D annual mean anomalies of the 4 following predictors:

1.  SST, also used to calculate the NASST indices.
2.  Sea level pressure (SLP), an atmospheric predictor reflecting the state of the dominant atmospheric modes 

of variability in the region, for example, the North Atlantic Oscillation (NAO) (Hurrell & Deser,  2010; 
Ruprich-Robert & Cassou, 2015).

3.  Sea surface salinity (SSS), an oceanic predictor that is not directly damped by heat fluxes to the atmosphere, 
allowing for the investigation of redistribution and damping by ocean circulation and its connections with 
NASST variability (Zhang, 2017).

4.  Sea surface height (SSH), an oceanic predictor used to infer geostrophic circulation with connections to varia-
tions in the strength of subpolar gyre (Koul et al., 2020). SSH is also related to subsurface ocean heat content 
with potential for long-term predictability (Buckley et al., 2019; S. Yeager, 2020).

These predictors are observable from the ocean surface, and are thus more likely to have longer records into the 
future with satellite observations, providing potential for application to operational predictions of climate. We 
tested additional predictors from CESM1, including net air-sea heat flux, barotropic streamfunction, mixed-layer 
depth, heat and salt content, and wind stress and its curl. None of these predictors yielded significantly better 
performance, so we focus on the above four variables.

Each predictor is cropped to the domain used to compute the NASST index. Ocean variables are re-gridded 
to match atmospheric grid using bilinear interpolation. We exclude regions over land and where the ice frac-
tion exceeds 5%. This allows us to compare oceanic and atmospheric predictors over shared areas where the 
signal is not dominated by sea ice variability, though including those points did not significantly impact the 
predictive skill. Each predictor is normalized to have a standard deviation of 1 across all dimensions, ensuring 
comparable variability between predictors and equal numerical contribution during the training process (Singh & 
Singh, 2020). Multiple NNs are trained with each of the above mentioned predictors separately. NNs that include 
all predictors as input did not yield improved skill, but rather indicate equivalent accuracy to the best predictor at 
each leadtime (not shown).

2.4. Network Architecture and Training Procedure

To separately investigate the dependency in timescale and predictor, each NN is trained to predict the NASST 
state at a specific leadtime (t = 0 to 25 years) given one predictor at a time. We withhold 10 members of CESM1 
LENS for testing, and split the remaining 32 members into training (90%) and validation (10%) subsets. We 
initialize 100 different networks to account for randomness in the training process, totaling 10,400 networks (26 
leadtimes × 4 predictors × 100 initialized networks). The training and validation sets are shuffled and resam-
pled for each initialized network, ensuring that the results are not sensitive to a particular subset. Each network 
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is trained for 50 epochs, but the training process is stopped if the validation loss increases for five consecutive 
epochs to prevent over-fitting. All discussed results are from the same withheld testing set across all 100 networks.

We explored combinations of architectures and hyperparameters for convolutional neural networks (CNNs) 
and fully-connected neural networks (FNNs). FNNs have multiple layers consisting of individual neurons, each 
possessing trainable weights for all neurons in the preceding layer. In contrast, CNNs feature alternating convo-
lutional layers, with trainable weights on filters that are applied throughout an image, and pooling layers to 
further reduce the dimensions, resulting in feature maps containing essential patterns needed for a prediction 
objective. Both architectures yielded comparable performance (Figure S4c in Supporting Information S1). Our 
hyperparameter tests revealed potential further optimization for SSH, but no systematic improvements across all 
predictors (see SI: Hyperparameter Testing). Since our objective is not to maximize accuracy, but rather to gain 
physical insight on drivers of NASST variability by examining inter-predictor differences, we focus on results for 
a simple 4-layer FNN with 128 neurons per layer and adopt the same architecture for all predictors.

2.5. Prediction Baselines

We compare the accuracy of the trained NNs to two baselines. Since each class is evenly sampled during the train-
ing, there is a 33% chance that a given class will occur, which we set as the random chance baseline. We addition-
ally examine the other extreme using the standard persistence baseline that assumes uninterrupted continuation of 
the current state (A. H. Murphy, 1992). For example, if the system is at NASST+ at the starting time (t = 0 years), 
we assume it will also be NASST+ for the target leadtime.

3. Higher Skill From Oceanic Predictors at Multidecadal Leadtimes in the Presence 
of External Forcing
We focus on the prediction skill for NASST+ and NASST− events (Figure 2). For the predictions of Neutral 
events, the NNs had low accuracy equivalent to random chance. This is expected due to the challenge of predict-
ing cases at the class boundaries or events with a weaker signal (Batista et al., 2004).

In the forced case (Figures 2a and 2b), NNs outperform both persistence and random chance baselines regardless 
of the predictor. The atmospheric variable, SLP, has similar-to-worse accuracy at all leadtimes compared to SST. 

Figure 2. The mean accuracy by leadtime for predicting NASST+ and NASST− states for NNs trained with each predictor. X-axis is the prediction leadtime from 0 
to 25 years. Shading indicates the 95% standard error of 100 NNs for each predictor. NNs trained with oceanic predictors SSH (blue) and SSS (pink) outperform those 
trained with SST (red) and SLP (yellow) at long leadtimes in the forced case (a–b). For the unforced case (c–d), performance is similar to the random chance baselines 
after 5–10 years (c–d).
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While this is unsurprising, considering the short persistence timescales of the atmosphere in the extratropics, 
on the order of weeks (Frankignoul & Hasselmann, 1977), the NN still outperforms the persistence and random 
chance baselines for predicting NASST+ across all leadtimes.

While SST is a better predictor at earlier leadtimes, NNs trained by both oceanic predictors (SSS and SSH) 
achieve consistently higher accuracy than SST at decadal and longer leadtimes (Figures 2a and 2b). Prolonged 
predictability from SSS could arise from absence of strong, direct damping by turbulent heat fluxes that exists 
in SSTs, allowing for more persistent SSS anomalies (Mignot & Frankignoul, 2003; Zhang, 2017). Similarly, 
subsurface heat content information present in SSH is shielded from damping by surface heat fluxes, leading to 
more persistence and potential predictability relative to SST (Buckley et al., 2019; Deser et al., 2003).

The increased predictability from oceanic variables is dependent upon the presence of external forcings. After 
removing the ensemble mean from the predictors and NASST index and repeating the training procedure, all 
NNs exhibit performance comparable to random chance after 5–10 years with minimal inter-predictor difference. 
Reduced damping of oceanic variables could lead to greater memory of externally forced signals in oceanic 
predictors. Overall, this highlights the importance of considering external forcing for climate prediction on 
multidecadal timescales and its enhancement of predictability derived from oceanic variables.

4. Consistent Source of Long-Term Predictability in the Transition Zone
To investigate the sources of predictability, we use LRP to examine the network's decision-making process (Bach 
et al., 2015; Böhle et al., 2019a). LRP back-propagates the “relevance” for given sample's prediction from the final 
output node to the input layer of the NN. The total relevance is conserved during this process through propagation 
rules, creating a “heatmap” of each pixel's contribution to the network's final decision (Montavon et al., 2019; 
Samek et al., 2021). We found that negative relevance values were highly sample and network dependent, and 
elected to use the LRPαβ rule (with α = 1.1, β = 0.1, p = 2, ϵ = 10 −2, see Section S3 in Supporting Information S1 
for testing details), emphasizing positive contributions to a given sample that were consistent across samples 
(Binder et al., 2016). Previous works compared such relevance maps with known patterns of physical processes 
for predicting Pacific climate variability for possible correspondences (Gordon et al., 2021; Toms et al., 2020).

Since LRP produces the relevance map for a single sample, we examine the overall learned source of predict-
ability by compositing relevances across correct predictions for the top 50 performing NNs of NASST+ and 
NASST−. The results are unchanged if all networks are included in the composite. The composites are normal-
ized prior to visualization to have values between 0 and 1, though the raw output relevance is of order 10 −4. We 
show relevance composites for key leadtimes between 0 and 25 years overlaid on composites of input predictors 
at corresponding leadtimes (Figure 3) for the forced NASST+ cases. Results are broadly consistent in unforced 
and for NASST− cases (Figures S5 and S6 in Supporting Information S1).

For instantaneous predictions (leadtime 0), the relevance maps resemble known patterns associated with AMV 
and its drivers. For example, the SST relevance map (Figure 3e) captures the canonical horseshoe pattern of 
AMV (Zhang et al., 2019). Furthermore, the maximum relevance south of Newfoundland in SST, SSH, and SSS 
is collocated with the SPNA-Gulf Stream dipole associated with AMV-related SSTs and major ocean circulation 
features (Gu & Gervais, 2022; Nigam et al., 2018; Oelsmann et al., 2020; Zhang, 2008). Interestingly, a second 
relevance maxima for SSS is present near the Amazon River outflow region, though further investigation is 
needed to determine if this is a model-dependent feature and its physical mechanisms. Overall, these aspects lend 
confidence that the NN has learned to rely upon regions that vary strongly with AMV and its associated ocean 
drivers.

Patterns associated with atmospheric drivers of NASST variability also emerge in relevance maps at leadtimes 
longer than 5 years (Figures 3f–3i). Successful predictions by SLP-trained NNs rely upon negative SLP anoma-
lies near the Icelandic Low in the northeastern Atlantic, a center of action for NAO (Deser et al., 2010; Hurrell 
& Deser,  2010). This learned reliance on the NAO-NASST linkage without additional input is encouraging, 
suggesting that additional predictability beyond the persistence baseline achieved by SLP-trained NNs may arise 
from large-scale air-sea interaction in this region and resulting ocean circulation anomalies.

The Transition Zone region between the subpolar and subtropical gyres is consistently important for predict-
ing NASST regardless of leadtime for oceanic predictors (Figures  3k–3t) (Buckley & Marshall,  2016). This 
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region has been connected to long-timescale oceanic processes, such as AMOC and its associated fingerprint in 
surface and subsurface temperatures (Zhang, 2008). In addition to prediction timescale, relevance over this region 
remains high irrespective of the class (NASST+ or NASST−) or the presence of external forcing (Figure S6 in 
Supporting Information S1). The potential importance of ocean dynamics for both forced and unforced NASST 
predictability is highlighted by this tendency for NNs to focus on this region.

5. CESM1-Trained Neural Networks Predict the Multidecadal Oscillation of 
Observed NASST States
Does the NNs' skill for NASST prediction apply beyond the CESM1 model world? Considering limited obser-
vational records of SSH, SSS, and SLP, we test if NNs trained on CESM1 SSTs can successfully predict the 
NASST state in HadISST. We pre-process and normalize the data using the same approach as for the CESM1 
output (Section 2.3). Accounting for reductions due to the 25 years leadtime, there remains 128 years of data 
between 1895 and 2022. The 1σ threshold (0.55°C) yielded 29 (17) NASST+ (NASST−) events. The distribution 
is skewed due to the warming trend. Due to the limited samples, the accuracy values were noisy, particularly at 
long leadtimes. Therefore, we focus broadly on the frequency of predictions by class (Figure 4).

The frequency of predictions by class across all NNs aligns with multidecadal NASST oscillations in HadISST, 
with more frequent NASST− predictions coinciding with negative NASST index values pre-1925 and 1960–1990. 
This is true particularly for interannual and multidecadal leadtimes (Figures 4a and 4c), with shifted phasing at 
decadal leadtimes (Figure 4b). The same results are recovered for the unforced case, though the multidecadal 
phasing of predictions is nearly absent for the decadal leadtimes (Figure S7 in Supporting Information S1). These 
are surprising results for two main reasons: The first is that the NN is not simply predicting the anthropogenic 

Figure 3. Composite relevance values (color) for “correct” NASST+ predictions of the top 50 performing networks for 0- to 25-year leadtimes, for the predictors 
from SST (a–e), SLP (f–j), SSS (k–o) and SSH (r–t), respectively. Relevance values are normalized for each composite. SSS relevance values were doubled to aid 
interpretability. Contours are the respective composites of standardized predictors for the given leadtime.
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warming trend (e.g., monotonically increasing NASST+ predictions in time), but has instead successfully learned 
the non-linear, oscillatory behavior of the observed NASST index. The second is that the weights not have been 
re-adjusted to HadISST, revealing that NNs trained on potentially biased CESM1 output maintain their ability to 
predict the phasing of observed multidecadal climate variability. Overall, this joins a growing body of studies that 
suggests promise for applying NNs trained on model output to predicting the trajectory of non-linear multidec-
adal climate variability in corresponding observational data sets such as HadISST (Labe & Barnes, 2022).

6. Discussion and Summary
We investigated the potential of applying NNs to multidecadal prediction of NASST variability and used LRP to 
understand the contributions of oceanic and atmospheric drivers. Three main conclusions of this work are:

1.  NNs trained with oceanic variables can predict NASST+ and NASST− states on multidecadal timescales, 
outperforming persistence and random chance baselines in the presence of external forcing.

2.  The Transition Zone emerges as consistent region from where NNs derive predictive skill, regardless of predic-
tion leadtime, NASST state, and the presence of the external forcing, suggesting a connection to ocean dynamics.

3.  NNs trained on CESM1 were able to predict the multidecadal phasing of observed NASST states without 
weight readjustment, suggesting promise for training NNs using model output for multidecadal prediction of 
observed climate.

Figure 4. Frequency of predicted class of each target year aggregated for interannual (1–9 years) (a), decadal (10–19 years) (b), and multidecadal (20–25 years) (c) lead 
times for the HadISST (in colored bars) and corresponding mean accuracy across NASST+ and NASST− predictions (indicated in panel titles). Blue/red/gray bars are 
the frequency of the negative/positive/neutral NASST predictions. The NASST Index from HadISST (solid-black line) and 1σ thresholds (dashed-black lines) are shown 
for reference.
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Previous studies have noted the importance of ocean initial conditions over external forcing for SST predict-
ability over the SPNA (S. Yeager et al., 2018). Our results suggests that external forcing can enhance predict-
ability derived from oceanic variables, evidenced by the difference in skill between atmospheric and oceanic 
predictors in the forced case at multidecadal timescales. A possible explanation is the larger heat capacity of the 
ocean allows for longer memory of externally forced signals, leading to enhanced predictability on multidecadal 
timescales (Frankignoul & Hasselmann, 1977). Further studies comparing regional variations in SST predicta-
bility and initial-state dependence, particularly with the SPNA, could yield further insight on the mechanisms 
behind increased skill of oceanic predictors under different forcing scenarios (S. Yeager et al., 2018; Gordon & 
Barnes, 2022).

A remarkably consistent feature across timescales in both unforced and forced cases is the high relevance over the 
Transition Zone. Decadal predictability from this region in CESM1 has been attributed to slow southward propa-
gation of water mass anomalies from the North Atlantic Deep Water formation region (S. G. Yeager et al., 2015). 
While this southward communication of anomalies has led to the suggestion that Transition Zone variability is 
driven by AMOC-related processes, others argue that buoyancy anomalies originating in the Transition Zone are 
advected cyclonically around the subpolar gyre to the western boundary where they influence AMOC variations 
(Buckley & Marshall, 2016; Zhang, 2008). Regardless of the direction of causality and dynamic linkages between 
AMOC and Transition Zone anomalies, a common thread is the involvement of ocean dynamics for long-term 
NASST predictability (Little et al., 2020).

Predictability arising from a stationary feature over a region, rather than smaller-scale features propagating across 
the domain, could explain the comparable performance between FNNs and CNNs; For predicting NASST, the 
absolute position of the feature is more important than its translation invariance, erasing advantages conferred by 
the CNN's filters that specialize in capturing such features throughout the input (Barnes et al., 2022). Expanding 
the input domains could potentially reveal additional regions of predictability, particularly considering the recent 
interest in inter-basin interactions (Gordon & Barnes, 2022; Hong et al., 2022).

Our current approach uses LRPαβ, a method known to mix negative and positive relevances (Bommer et al., 2023; 
Mamalakis et al., 2022). Since this is more likely with increasing network complexity, we used a simpler 4-layer 
FNN (Mamalakis et  al.,  2022). Additionally, we find the negative relevances are largely inconsistent across 
samples and are reduced by the compositing operations. Investigations using additional explainability methods 
to assess the robustness of high relevance over the Transition Zone is critical future step (Bommer et al., 2023). 
Our hyperparameter testing indicated improved validation accuracy at long leadtimes for SSH-trained NNs 
with increased number of layers, suggesting pathways for further optimization (Figures S1–S3 in Supporting 
Information S1).

A cautionary note is that higher accuracy from networks trained with oceanic predictors could be a model 
dependent feature. Our results used CESM1, a coarse-resolution model with biases in the separation of the Gulf 
Stream and position of the North Atlantic Current (Kirtman et al., 2012). Since our relevance maps reveal that 
NNs depend upon this region for skillful predictions of NASST state, verifying the model dependence of this 
aspect by training NNs with other model large ensembles, reanalyses, or observational data sets is an important 
future endeavor. Considering connections between biases in mean state and decadal variability over the SPNA 
as well as sensitivity to external forcing, exploring correspondences between the resultant relevance maps and 
biases in ocean circulation may unveil further hints on the importance of ocean dynamics for NASST predicta-
bility (Menary et al., 2015).

Data Availability Statement
The monthly output from the CESM1 Large Ensemble is publicly available from the National Center for Atmos-
pheric Research's Climate Data Gateway on the Earth System Grid (Kay et al., 2015: https://www.cesm.ucar.
edu/community-projects/lens/data-sets/). Further specific instructions on accessing the CESM1 variables TS, 
LANDFRAC, ICEFRAC, SSS, PSL, and SSH used for this study CESM1 is detailed at this link (https://www.
cesm.ucar.edu/community-projects/lens/data-sets). The HadISST data set can be downloaded directly from their 
website (Rayner et  al., 2003: https://www.metoffice.gov.uk/hadobs/hadisst/). Software for this work is availa-
ble on Zenodo (Liu et al., 2023, DOI: https://doi.org/10.5281/zenodo.8342739), and the corresponding linked 
GitHub repository (https://github.com/glennliu265/predict_nasst). The Pytorch-LRP Software can be found in 
the following repository (Böhle et al., 2019b: https://github.com/moboehle/Pytorch-LRP).
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https://www.cesm.ucar.edu/community-projects/lens/data-sets
https://www.metoffice.gov.uk/hadobs/hadisst/
https://doi.org/10.5281/zenodo.8342739
https://github.com/glennliu265/predict_nasst
https://github.com/moboehle/Pytorch-LRP
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1. Introduction

For the supporting information, we provide details on the hyperparameter testing and

final selection of the fully-connected neural network (FNN) used in this project (Section

2 and Table S1). We compare the performance between FNNs and convolutional neural

networks (CNNs) (Fig. S4). We additionally discuss the rule and choice of parameters

for the Layer-wise Relevance Propagation (LRP) method used for creating the relevance

maps of this study (Section 3). Additional figures are also provided for different cases

discussed in the main text. They demonstrate that the the main conclusions are not

sensitive to these different cases.
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2. Hyperparameter Testing

We tested a variety of architectures for both FNNs and CNNs. Here, we present a key

subset of the results using SSH as a predictor. The accuracy for these tests were computed

over the validation set from CESM1 to prevent leakage of information between the testing

and validation subsets, ensuring that none of the networks have been optimized on the

testing subset of CESM1 or HadISST. The same training procedure described in the main

text (Section 2.4: Network Architecture and Training Procedure) was conducted with one

difference: 50 networks (rather than 100) were initialized for each architecture to reduce

computational costs.

We show the mean validation accuracy by NASST class for a subset of these tests

varying the number of layers (2, 4, 6, 8, 10) and number of neurons per layer (64, 128,

256) for FNNs, totaling 19,500 trained networks across 26 leadtimes (Fig. S1). We find

that the number of neurons has little impact on the accuracy. In contrast, increasing

the number of layers improves performance on NASST+ and NASST- predictions with

a marked jumped between 4 and 6 layers. Additional testing (up to 16-layer FNNs with

128 neurons each) revealed that the increases in accuracy for NASST+ and NASST-

stop around 8-10 layers. We additionally tested if including a dropout layer impacted

the results, but found no significant improvement over the validation set. Considering

the efficacy of dropout layers described in previous applications and the relatively small

validation set we used, we decided to retain the dropout layer for our final results (Bohle

et al. 2019, Gordon and Barnes 2022, Barnes et al. 2022).
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This improvement in accuracy however appears to be limited to the SSH predictor.

We retrained 100 networks for each predictor using a 6-layer FNN with 128 units per

layer (FNN6), and found that there is limited improvement for SSS, and comparable per-

formance for SST and SLP between the 4-Layer FNN (FNN4) presented in the results

and FNN6 (Fig. S2). Furthermore, changes in architecture did not impact our LRP

heatmaps–the regions with highest relevance remain the same. Since our focus is physi-

cal interpretability rather than optimizing accuracy, we have elected to remain with the

simpler and computationally cheaper FNN4, as more complex networks are more likely to

be vulnerable to the mixing of positive and negative contributions for our chosen LRPαβ

approach (Mamalakis et al. 2022). These hyperparameters are detailed in Table S1. Our

hyperparameter testing however points to potential for further optimization via special-

ized architectures for each predictor.

We also tested 18 combinations of hyperparameters for CNNs varying the filter size (2,

3, 4), stride size (1, 2, 3, 4), and number of convolutional/max pooling layers (1,2,3),

given constraints by the dimension reduction of the input with successive convolutional

and pooling layers (Fig. S3). This led to a total of 23,400 trained networks across 26

leadtimes. Unlike FNNs, we did not find pronounced differences in performances for the

given range of hyperparameters in the validation accuracy, and use the 2-layer architecture

detailed in Table S2.

3. Layer-wise Relevance Propagation and Parameters

We used the Pytorch-LRP package developed by Böhle et al. (2019) to compute rel-

evance heatmaps for our trained networks. This package applies a form of the LRPαβ
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rule that weights positive and negative activations differently, described by Equation 6 of

Binder et al. (2016) where the relevance (R) of neuron i in layer (l) from neurons j in

preceding layer (l + 1) is given by:

R
(l)
i =

∑
j∈(l+1)

((1 + β)
z+ij
z+j

− β
z−ij
z−j

)R
(l+1)
j (1)

Where zj = Σk:wkj ̸=0zkj + ϵ, and zij = (wijxi)
p. This approach has three parameters:

(1) β, the weight placed on the negative activations; (2) p, a scaling factor applied to

the activations; and (3) ϵ, added to prevent noisy explanations where the denominator

approaches zero. We used with β=0.1, p=2, and ϵ = 10−2 for our results. We tested a

range of parameters for LRPαβ (denoted ”b-rule” in the package), including β = [0.1 to

1], ϵ = [10−1 to 10−8], and p = [1 to 4]. The patterns in our relevance maps were robust

to changes in p and ϵ. Increasing β led to the appearance of weak regions with negative

relevance, but did not change the fundamental pattern or location of positive maxima.

We found sensitivity to choice of p = 1 or p = 2 when switching to the LRPϵ rule (de-

noted ”e-rule” in the package), which equally weights positive and negative values (Equa-

tion 5 in Binder et al. 2016). The former (p = 2) yields explanations similar to LRPαβ.

For p = 1, similar regions of positive relevance occur, but the derived explanations were

noisy and challenging to interpret, with little consistency across leadtimes and predictors.

This is reflective of the trade-off between the fidelity (accurate representation of target

neuron) versus the understandability (ease of human interpretation) in neural network

explanations (Montavon et al. 2019). Preliminary testing with multiple additional XAI

techniques using the captum package in Python revealed patterns that resemble the maps
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retrieved from LRPαβ. Considering the stability of LRPαβ to parameter changes, our

focus on obtaining physical insights from this approach, and its preliminary consistency

across multiple XAI methods, we elected to focus our results using the LRPαβ. Further

exploration of the full parameter space across different XAI methods for each predictor,

leadtime, and prediction class is an important avenue of future work.
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Figure S1. Validation Accuracy for NASST+ (A) and NASST- (B) for hyperparameter

combinations of a Fully-Connected Neural Network using SSH as a predictor. Colors indicate

number of layers, markers indicate number of units. The selected hyperparameter set for our

main results is colored in black.
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Figure S2. Same as Figure 2 in the main text, but comparing a 4-layer (dotted) and 6-layer

FNN (solid) for each predictor.

Figure S3. Same as Fig. S1 but for hyperparameter combinations of a Convolutional Neural

Network using SSH as a predictor. Colors indicate filter size, markers indicate stride length, and

linestyles indicate number of layers.
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Figure S4. Schematic diagram of an example AMV Prediction problem (A) for the 2-layer CNN

(B). The comparison in positive and negative North Atlantic Sea Surface Temperature (NASST+,

NASST-) test accuracy between the FNN (yellow) and CNN (blue) for an SST predictor (C),

with the random chance (dotted) and persistence baselines (black). Both networks perform

similarly regardless of predictor, and their means are largely within the 95% standard error

across initialized networks (shading).
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Figure S5. Same as Figure 3, but for “correct” NASST- predictions for the top 50 performing

networks. The regions of high relevance, i.e., sources of predictability, resemble that of NASST+,

though there are small differences. The AMV maximum in the central subpolar gyre is more

distinctly outlined for SST at leadtime 0 (Panel E). Additionally, the NN focuses on anomalies

closer to the Azores High at 5-year leadtimes, rather than directly to the Iceland low as in the

NASST+ case (Panel I).
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Figure S6. Same as Fig. 3, but for the unforced case where the external forcing was

removed. The regions of maximum relevance resemble that of the forced NASST+ predictions.

This similarity between both forced and unforced cases suggests that the NASST predictability

is sourced from similar regions, though further work is needed to explicitly investigate the causal

processes and dynamics.
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Figure S7. Same as Figure 4, but for NNs trained with unforced CESM1 data predicting the

detrended NASST Index from HadISST, detrended by removing a cubic fit (Frankignoul et al.

2017). The result is not sensitive to the detrending method. There is a reduction in accuracy of

approximately 30%, 15%, and 7% relative to the forced scenario for each timescale. While these

are all still above the random chance baseline, these values are likely sensitive to the limited

number of samples.
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Table S1. Neural Network Architecture and Training Hyperparameters used in the Fully-

Connected Neural Network (FNN)

Number of layers 4
Neurons per layer 128

Activation Function Rectified Linear Unit (ReLU)
Dropout % (Last Layer) 50%

Max Epochs 50
Early Stoppping 5 Epochs of Increasing Loss
Mini Batch Size 32

Optimizer Adam
Learning Rate 1 x 10−3

Table S2. Hyperparameters used in the Convolutional Neural Network (CNN)

Number of layers 2
Channels by Layer 32, 64

Filter Sizes [2,3], [2,3]
Filter Strides [1,1]

Pool Sizes [3,3], [3,3]
Pool Strides [1,1]

Activation Function Rectified Linear Unit (ReLU)
Max Epochs 50

Early Stoppping 5 Epochs of Increasing Loss
Mini Batch Size 32

Optimizer Adam
Learning Rate 1 x 10−3
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