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The emerging human influence on the 
seasonal cycle of sea surface temperature

Jia-Rui Shi    1 , Benjamin D. Santer    1,2 , Young-Oh Kwon    1 & 
Susan E. Wijffels1

Gaining insight into anthropogenic influence on seasonality is of scientific, 
economic and societal importance. Here we show that a human-caused 
signal in the seasonal cycle of sea surface temperature (SST) has emerged 
from the noise of natural variability. Geographical patterns of changes in SST 
seasonal cycle amplitude (SSTAC) reveal two distinctive features: an increase 
at Northern Hemisphere mid-latitudes related to mixed-layer depth changes 
and a robust dipole pattern between 40° S and 55° S that is mainly driven 
by surface wind changes. The model-predicted pattern of SSTAC change is 
identifiable with high statistical confidence in four observed SST products and 
in 51 individual model realizations of historical climate evolution. Simulations 
with individual forcings reveal that GHG increases are the primary driver of 
changes in SSTAC, with smaller but distinct contributions from anthropogenic 
aerosol and ozone forcing. The robust human ‘fingerprint’ identified here is 
likely to have wide-ranging impacts on marine ecosystems.

Earth’s climate is simultaneously influenced by anthropogenic and 
natural external forcings, as well as by natural internal climate vari-
ability operating on a wide range of different spatial and temporal 
scales. Detection and attribution analysis seeks to disentangle these 
human and natural influences1. Pattern-based ‘fingerprint’ methods are 
a key component of detection and attribution studies. Such methods 
have successfully identified human fingerprints in long-term annual 
mean changes in surface and atmospheric temperatures2–7, aspects 
of the hydrological cycle8–12, atmospheric circulation13,14 and ocean 
heat content15,16.

The annual cycle is one of the most fundamental aspects of the 
climate and accounts for greater than 90% of seasonal temperature 
variability over most of the globe17. It influences human health, water 
supplies, agriculture, energy demand and ecosystems. Gaining insight 
into how anthropogenic forcing has impacted seasonality is of scien-
tific, economic and societal importance. Although annual cycle changes 
have attracted recent scientific attention in detection and attribution 
studies17–22, such investigations have not included ocean variables.

We focus here on changes in the amplitude of the annual cycle 
of sea surface temperature (SSTAC), which plays an important role in 
air–sea interactions, global rainfall patterns and the distributions of 

marine ecosystems23–25. In the tropical Pacific, model projections show 
an intensification of SSTAC in the twenty-first century compared with the 
twentieth century, which has been attributed to changes in meridional 
SST gradients26 and atmospheric circulation27. In the mid-latitudes, 
SSTAC is projected to increase in both hemispheres24,28,29. These projec-
tions of SSTAC intensification in the mid-latitudes are consistent with 
the observed amplitude increase in the annual cycles of surface air 
temperature and tropospheric temperature17,22 during recent decades. 
Given that SST, surface air temperature and tropospheric temperature 
are independently measured, the emergence of an externally forced 
signal in SSTAC would provide additional support for the identifica-
tion of anthropogenic fingerprints in the annual cycles of surface air 
temperature and tropospheric temperature.

Several previous model investigations demonstrated that the 
mid-latitude amplification of SSTAC is primarily linked to changes in 
mixed-layer depth (MLD)24,28–31. In summer, decreasing MLD leads to 
trapping of the net surface heat flux in the ocean in a thinner layer, 
thereby yielding a larger summertime SST increase28. This shoaling 
of the mixed layer results from enhanced upper ocean stratification 
driven by ocean warming32,33. In simulations with estimated future GHG 
emissions, the annual mean mixed layer shoaling and the mid-latitude 
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asymmetry is consistent with results from previous studies of changes 
in the amplitude of the annual cycle of mid-tropospheric tempera-
ture17,22. As noted above, the simulated decrease in SSTAC trends in the 
Southern Ocean (Fig. 1f) is common to HadISST and PCMDI. Although 
the other two observational estimates do not show negative SSTAC 
trends between 50° S and 60° S, they have trend magnitudes within 
this latitude band that are smaller than the positive trends between 
35° S and 45° S, and thus are consistent with the MMM results in a 
relative sense.

Fingerprint analysis and detection time
We used a standard pattern-based method to determine whether the 
model-predicted externally forced fingerprint of SSTAC changes is sta-
tistically identifiable in observations37. The fingerprint we searched for 
is the leading empirical orthogonal function (EOF) of the MMM SSTAC 
anomalies (Methods). The fingerprint is calculated from the HIST simu-
lations over the period 1950–2014 (Fig. 2a). Our analysis assumed that 
the spatial structure of the fingerprint pattern did not change markedly 
over time17,38. We tested and confirmed this assumption by calculating 
the HIST fingerprint for four different analysis periods (1950–2014, 
1960–2014, 1970–2014 and 1980–2014; Extended Data Fig. 2).

We compared the time-invariant SSTAC fingerprint pattern calcu-
lated from the HIST MMM with the time-evolving SSTAC patterns from 
observed datasets and long model control runs, respectively. These 
comparisons yielded time series of similarity between the fingerprint 
and observed SSTAC patterns and between the fingerprint and patterns 
of natural internal variability in SSTAC. By varying the trend length L 
over a range of timescales (from 10 to 65 years), we could determine 
whether (and when) the similarity between the observations and the 
HIST fingerprint showed a statistically significant signal—that is, an 
increase in pattern similarity over time that is unlikely to be due to 
natural internal variability alone.

Timescale-dependent signal-to-noise (S/N) ratios were calcu-
lated from the trends of these signal and noise time series (Fig. 2b). 
We stipulated that fingerprint detection occurred at trend length L 
if the S/N ratio exceeded a 5% significance threshold and remained 
above this threshold for all trend lengths larger than L. The model 
HIST fingerprint was identifiable with high statistical confidence (that 
is, at the 5% significance level or better) in all four observational SST 
datasets after approximately 2000. At the end of the 65 yr record, S/N 
ratios in the observations varied between 2.8 and 3.5. This indicates 
that smaller-scale differences between the four observational datasets 
(such as the previously noted SSTAC trend differences at high latitudes 
in the Southern Hemisphere) have relatively small impact on detection 
of the global-scale fingerprint in observations.

We also show the S/N ratios obtained when the HIST MMM finger-
print was searched for in individual realizations of HIST simulations 
(grey curves in Fig. 2b). In all 51 realizations, S/N ratios exceeded the 5% 
threshold before the end of the simulation period in 2014. As in the case 
of the observations, SSTAC changes in individual HIST runs exhibited 
time-increasing similarity with the fingerprint, pointing towards the 
robustness of the model-predicted forced SSTAC response.

The S/N ratios calculated with observed data were generally within, 
but close to the lower end of, the model-generated S/N ratio distribu-
tion. There are multiple (not mutually exclusive) possible explanations 
for this result. These include errors in the model external forcings39, 
errors in the simulated SSTAC responses to the applied forcings, residual 
systematic errors in the observations and model–observation mis-
matches in the random phasing of internal variability (for example, 
the El Niño/Southern Oscillation, Interdecadal Pacific Oscillation and 
Pacific Decadal Oscillation). The latter explanation contributes to the 
more muted observed annual mean tropospheric warming over the 
satellite era34.

It is still unclear, however, what influence such mismatches in 
simulated and observed variability phasing have on changes in the 

SSTAC increase are projected to intensify29 as the effective heat capacity 
of the thinner mixed layer decreases.

It is still unclear whether an anthropogenic fingerprint can be 
formally detected in the changing amplitude of the observed SSTAC 
and whether this fingerprint can be robustly attributed to human 
influence. We address this question here with four different observed 
SST datasets and over 50 individual model realizations of historical 
climate change. An important component of our fingerprint study is its 
use of idealized simulations and heat budget analysis to elucidate the 
physical mechanisms that dictate key features of the common model 
and observed patterns of SSTAC change.

Trends in SSTAC
In all four of the observed SST products we examined, SSTAC trends 
over our primary analysis period (1950–2014) increase in most ocean 
regions and have a similar spatial pattern (Fig. 1a–d). Some features 
of the observed pattern are also evident in model simulations of 
historical climate change (HIST; Fig. 1e). The changes common to 
the models and observations are dominated by zonal mean ampli-
tude increases between 30° and 60° latitude in both hemispheres  
(Fig. 1f), poleward of the maxima in the SSTAC climatology (Extended Data  
Fig. 1). Another notable regional-scale feature of the SSTAC trends in the 
HIST multi-model mean (MMM) and the observed Hadley Center Sea 
Ice and SST dataset version 1 (HadISST) and Program for Climate Model 
Diagnosis and Intercomparison SST dataset (PCMDI) is the decrease 
in annual cycle amplitude in the vicinity of the Antarctic Circumpolar 
Current (Fig. 1e) south of 50° S.

Although models can reproduce the positive observed SSTAC 
trends at Northern Hemisphere mid-latitudes, the observed trends 
are smaller than in the simulations (Fig. 1f). One possible interpreta-
tion of this result is that the observed regional signals may be partly 
suppressed by the specific phasing of internal variability in the North 
Atlantic, as is the case with observed annual mean warming in the 
tropical Pacific34,35. Differences between SSTAC trends in the observed 
data and the HIST MMM are also prominent in the tropics, such as the 
pronounced maximum in the western equatorial Pacific that appears 
only in observations.

These model–observation differences may be partly due to the fact 
that the MMM is an average over individual realizations of historical 
climate change (in a single model) and an average over models. Averag-
ing damps the noise of natural internally generated variability, which is 
uncorrelated across model realizations (except by chance). The MMM 
should therefore more clearly reveal the response to external forc-
ing34,35. In contrast, there is only one realization of the observed record, 
which contains both internal variability and the forced signal in SSTAC. 
We therefore expect observed SSTAC changes to be noisier than in the 
MMM, particularly in regions where multidecadal variability affects 
tropical and subtropical temperature trends34,35.

Could the above-mentioned model–observation differences in 
SSTAC trends be related to model biases in climatological mean SSTAC 
patterns? We found that the model-average correlation between the 
patterns of model biases in the climatology of SSTAC and the model 
biases in the patterns of trends of SSTAC was low (R = 0.06). We inferred 
from this that model biases in climatology are unlikely to be a domi-
nant factor in explaining the differences between the observed and 
simulated SSTAC trend patterns in Fig. 1a–d and Fig. 1e. This does not, 
however, rule out a possibility we discuss later—that overestimated 
climate sensitivity may contribute to model–observation differences 
in SSTAC trends36.

The MMM and observations show closer agreement in global-scale 
features of the zonally averaged SSTAC trends (Fig. 1f), with a common 
pattern of larger increases in the amplitude of SSTAC in the extratrop-
ics relative to the tropics. This pattern occurs in both hemispheres, 
but the mid-latitude increases in SSTAC are larger and broader in the 
Northern Hemisphere than in Southern Hemisphere. This hemispheric 
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seasonal cycle of SST. Here we note that individual ensemble members 
generated with the same model and external forcings can have appre-
ciable differences in their S/N behaviour (Extended Data Fig. 3). This 
suggests that, as in the case annual mean tropospheric temperature 
changes34, model–observation differences in the phasing of internal 
variability may have marked influence on SSTAC, and hence on the 
overestimated ‘model-only’ S/N ratios in Fig. 2b. The non-negligible 
correlation between climate sensitivity40 and the model-only S/N ratios 
over the full 65 yr analysis period (R = 0.55) provides evidence that 
overestimated model climate sensitivity36 could also contribute to 
overestimated model-only S/N ratios (Extended Data Fig. 4).

It is important to determine the monitoring period required to 
identify the model-predicted HIST SSTAC fingerprint. As in the case of 

Fig. 2b, this is the trend length L at which detection occurs, shown as a 
function of the choice of the analysed period (Fig. 2c). We considered 
four different periods; each ended in 2014 but had a different start 
date (1950, 1960, 1970 and 1980). There were two principal findings 
from this analysis. First, irrespective of the assumed start date of moni-
toring, the model-predicted HIST SSTAC fingerprint pattern in Fig. 2a 
was robustly identifiable in all four observed SST datasets and in all 
51 model realizations of historical climate change. Except in the case 
of S/N ratios obtained with COBE data, the observed values of L were 
always contained within the spread of the model results.

Second, a common feature of both the simulated and observed 
results is that L decreases systematically with later start dates. For the 
MMM SSTAC changes, L was approximately 48 years and 18 years for 
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Fig. 1 | Trends in SSTAC over the period 1950–2014. a–d, Trends from the 
observed HadISST (a), the NOAA Extended Reconstructed SST dataset version 5 
(ERSST) (b), the Centennial in situ Observation-Based Estimates of the variability 
of SST and marine meteorological variables, version 2 (COBE) (c) and PCMDI 
(d) datasets. e, Trends from the MMM of HIST simulations from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6). Regions where the model-

average climatological sea-ice coverage is greater than 10% are masked in grey. 
f, Zonal mean trends in the amplitude of the SSTAC estimated from observations 
and models. The grey curves are from 51 individual HIST simulations. The 
domain over which all calculations are performed is restricted to 60° S–60° N to 
minimize the impact of sea-ice changes on SSTAC. The colour scale in e also applies 
to a–d.
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start dates in 1950 and 1980 (respectively). This systematic decrease 
is probably due to larger net positive anthropogenic forcing over the 
1980–2014 period than over periods with earlier start dates that sample 
appreciable negative forcing by anthropogenic aerosols. As will be 
shown in the next section, GHG forcing is the dominant influence on 
simulated SSTAC changes, so changes over time in the relative impor-
tance of GHG and anthropogenic aerosol forcing must contribute to 
the differences in L in the four analysis periods in Fig. 2c. Note that 
for fingerprint detection in the four different observed SST datasets, 
the spread in L values decreased as a function of increasing start date. 
This decrease in spread is partly due to improvements over time in 
the quality and spatial coverage of SST measurements and overlap 
between datasets.

Contributions from individual external forcings
We used single-forcing simulations to isolate and quantify the indi-
vidual contributions of changes in well-mixed GHGs, anthropogenic 
aerosols (AER), stratospheric ozone depletion (O3) and volcanic erup-
tions and solar variability (NAT) (Methods). We applied two different 
methods to understand the effects of single forcings: (1) to estimate the 
contributions of individual external forcings to the time-evolving S/N 

ratios obtained with the HIST MMM fingerprint, the GHG, AER, O3 and 
NAT single-forcing simulations were all regressed onto the same HIST 
fingerprint used in the previous section; (2) to determine whether the 
model-predicted fingerprint associated with an individual forcing was 
statistically identifiable, SSTAC changes from observations and HIST 
runs were projected onto each of the four fingerprints estimated from 
the GHG, AER, O3 and NAT single-forcing experiments. Here we focus 
on Method 1 results. The results based on Method 2 are discussed in 
the Methods.

The S/N results for Method 1 indicate that GHG forcing is the domi-
nant contributory factor to the identification of the HIST SSTAC finger-
print, which is detectable in the GHG MMM before 1990 (and before 
the end of the analysis period in 2014 in 48 out of 51 individual GHG 
realizations; Extended Data Fig. 5). The S/N ratios for the ‘GHG only’ 
case increase nearly linearly with increases in L and the magnitude of 
the GHG forcing. In contrast, S/N results for AER show markedly non-
linear behaviour as L increases. This is due to non-monotonic changes 
in emissions of anthropogenic sulfate aerosols, with large emissions 
after World War II followed by a reduction in emissions from North 
America and Europe after the 1980s41–43. The HIST SSTAC fingerprint 
was not detectable in the MMM of AER, O3 or NAT.
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Fig. 2 | SSTAC fingerprint and S/N ratio analyses. a, Time-invariant HIST MMM 
fingerprint pattern. The fingerprint is defined here as the EOF1 of the MMM SSTAC 
changes over the period 1950–2014 (the explained variance is 36.9%).  
b, Timescale-dependent S/N ratios for trends calculated from signal and noise 
time series for 1950–2014. The HIST MMM result is the black curve; results from 
individual HIST runs are the grey curves. The coloured lines denote S/N ratios 
estimated by searching for the HIST MMM SSTAC fingerprint in four different 
observed SST datasets. The horizontal purple line is the 5% significance level 
(Methods). c, Detection time relative to the start year for the model-predicted 
SSTAC fingerprint from the HIST experiment. Fingerprint detection occurs when 

the S/N ratios for an L-year analysis period first exceed the stipulated significance 
level and then remain above it for all larger values of L. The y axis shows the 
value of L that satisfies this condition. Results are for four different assumed 
analysis start years (1950, 1960, 1970 and 1980). In the box and whisker plots, the 
horizontal bar is the median value, the box size represents the interquartile range 
and the whiskers span the full range of detection times from all 51 individual HIST 
realizations. Black squares are the detection times calculated with the MMM. 
Coloured circles are detection times estimated by searching for the model-
predicted SSTAC fingerprint in four different observed SST datasets (see the 
legend in b).
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Our analysis of the impact of individual anthropogenic factors 
assumed additivity of the forced responses in GHG, AER, O3 and 
NAT44,45. To test the validity of this additivity assumption, we compared 
the HIST S/N results in Fig. 3a with S/N results obtained for ALL, the 
linear combination of the individual S/N ratios obtained for the GHG, 
AER, O3 and NAT experiments. Additivity is a reasonable assumption 
for analysis periods longer than 40 years. For periods shorter than 
40 years, differences between the HIST and ALL S/N results are probably 
related to the combined effects of larger noise on shorter timescales, 
the smaller ensemble size for O3 and nonlinear aspects of the forced 
SSTAC responses46–48.

The detection year for the SSTAC fingerprint differed across HIST, 
GHG and three linear combinations of individual SSTAC responses 
(GHG + AER, GHG + O3 and GHG + AER + O3; Fig. 3b). The primary influ-
ence on detection year was GHG, with AER acting to delay fingerprint 
detection: ‘GHG only’ yielded systematically earlier detection year 
than any set of SSTAC changes that includes AER (HIST, GHG + AER and 
GHG + AER + O3). Including O3 also advanced detection time, with 
the earliest median detection year of the HIST SSTAC fingerprint (in 
1985) in the GHG + O3 linear combination. The spread in detection 
year obtained with linear combinations was larger than the spread in 
detection year inferred from HIST. This is probably due to amplification 
of noise in the linear combination of individual responses.

Physical drivers of SST changes
Here we seek to understand the physical drivers of the SSTAC changes 
described in the previous sections. In the observations, warming of 
zonal mean SST over 1950–2014 occurred in nearly all months and 
latitudes (Extended Data Fig. 6). This was more pronounced in the 
mid-latitudes of the summer hemisphere. In the Southern Hemisphere 
at approximately 40° S, both the observations and HIST displayed 
warming relative to annual mean trends in austral summer and cool-
ing relative to annual mean trends in austral winter (Fig. 4a,b). In HIST, 
this feature was primarily driven by GHG forcing (Fig. 4c). Relative to 
observations, CMIP6 models yielded larger Northern Hemisphere 
temperature rises in both summer and winter. As noted above, there 
are multiple possible interpretations of this result.

Another prominent aspect of HIST and GHG was a dipole pattern 
characterized by anticorrelation between the seasonal temperature 

changes at roughly 40° S and 55° S. GHG and O3 forcing both contrib-
uted to this feature (Fig. 4c,d). As noted above, this dipole was evident 
in two of the four observed datasets (HadISST and PCMDI; Extended 
Data Fig. 7). These observational differences probably arise because 
satellite data were included in HadISST and PCMDI, but not in ERSST 
and COBE. In consequence, the Southern Ocean is better represented 
in the first two datasets, especially in the vicinity of sea ice.

Buoyancy flux and wind stress changes are two major surface forc-
ings affecting the Southern Ocean climate49–51. We explored the respec-
tive effects of buoyancy (dominated by heat flux change) and wind 
(momentum) forcing on SSTAC changes using the Flux-Anomaly-Forced 
Model Intercomparison (FAFMIP) experiments (Fig. 5). In the FAF-stress 
experiment, in which CO2-induced perturbations to the ocean are 
imposed in wind stress only, the Southern Hemisphere mid-latitudes 
showed a robust meridional dipole pattern in zonal mean SSTAC change 
(Fig. 5b). In the FAF-heat experiment, CO2-driven perturbations to 
heat fluxes amplified SSTAC in both hemispheres, but the magni-
tude of the change is markedly larger in the Northern Hemisphere  
(Fig. 5c), where the wind stress effect is limited. The FAFMIP results 
imply that wind forcing caused by CO2 increases is the main driver of the 
above-described SSTAC dipole pattern between 40° S and 55° S found in 
HIST, GHG and two of the observed SST datasets. In contrast, changes in 
Northern Hemisphere mid-latitude SSTAC arise from increased surface 
heat flux linked to atmospheric warming.

In addition to the influence of surface wind stress and heat flux 
forcings, the SSTAC fingerprint can also be influenced by ocean adjust-
ments arising from MLD changes. We investigated the role of MLD 
changes with a simplified mixed-layer heat budget analysis of the 
HIST runs. Our heat budget model also considered the effects of the 
net surface heat flux (Qnet) and shortwave radiation flux out of the 
mixed-layer base into the intermediate ocean (Qb) (Methods; equation 
(3)). The patterns of the annual cycle amplitude of SST tendency (dSST/
dtAC) change in the HIST runs can be reproduced by this simple model 
(Fig. 6a,b) and are consistent with the SSTAC fingerprint (Fig. 2a). The 
shoaling of MLD with fixed Qnet − Qb is the key factor here (Fig. 6c). 
In winter, this shoaling effect generates SST cooling by enhancing the 
temperature response to winter heat loss. In summer, shoaling yields 
SST warming. Our heat budget analysis helps to explain the previ-
ously described findings based on the analysis of the HIST and FAFMIP 
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Fig. 3 | S/N ratios and detection times from single-forcing runs and their 
linear combinations. a, S/N ratios for the signal trends obtained by fingerprint 
analyses involving the patterns of SSTAC change estimated from the MMM of 
different experiments. Results are for Method 1 (Methods). For O3, the MMM is 
calculated from the four models for which O3 results were available. The MMM 
in the remaining cases is based on a larger set of ten models. ALL represents the 
linear combination of S/N ratios from GHG, AER, O3 and NAT. The horizontal 

grey line is the 5% significance level. b, The detection year of the HIST fingerprint 
estimated from HIST, GHG and linear combinations of SSTAC changes from GHG, 
AER and O3. The analysis period is 1950–2014. In the box and whisker plots, the 
horizontal bar is the median value, the box size represents the interquartile range 
and the whiskers span the full range of detection times from all the analysed 
model simulations.
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runs, showing that MLD changes are an important component of the 
response to the surface heat flux changes.

As a result of this seasonally dependent effect of the MLD shoaling, 
SSTAC would be amplified even with constant MLD shoaling throughout 
the year. This is why both hemispheres show positive annual cycle 
changes in the 30–50° latitude band. Between 50° S and 60° S, the MLD 
deepens in austral summer, which appears to overwhelm the shoal-
ing of MLD in austral winter, thus decreasing SSTAC in this band. The 
fixed MLD case resulted in a weak, but reduced, SSTAC in most regions  
(Fig. 6d), which implies that the warming induced by the Qnet-Qb 
change is slightly larger in winter than in summer.

We performed two further sensitivity experiments: (1) constant 
monthly MLD shoaling, in which the summer value was applied for all 12 
months at each location; and (2) shoaling MLD by 5% in every month and 
location relative to the background monthly value. Our results suggest 
that the absolute change and relative change of MLD give rise to similar 
patterns (Extended Data Fig. 8). The major difference was in the 50–60° S 
band, apparently due to the opposite directions of MLD change between 
austral winter and summer (Extended Data Fig. 9a,b). For all other lati-
tudes, the shoaling of the mixed layer was consistent with seasons.

The westerly wind stress in the 50–60° S region increases in austral 
summer (Extended Data Fig. 9c,d). This can deepen MLD by increased 
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Fig. 4 | Zonal mean trends over 1950–2014 in monthly mean SST, zonal wind 
stress and MLD. a, The ensemble mean of four different observed datasets. 
b–d, The MMM of the HIST, GHG and O3 simulations. All results are departures 
from annual mean trends. Coloured shading denotes monthly SST trends, 
grey contours are MLD trends plotted with 0.75 m dec−1 intervals and coloured 
contours are zonal wind stress trends plotted with 7.2 × 10–4 Pa dec−1 intervals 

(with positive changes shown in magenta). The zero contours are omitted. We 
show the MLD changes in the Northern Hemisphere only, and the wind stress 
changes in the Southern Hemisphere only. Additional information about 
simulated and observed MLD and wind changes (including observational data 
sources) is given in Extended Data Fig. 9.
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local turbulent mixing, as well as by the increased equatorward advec-
tion of colder water. The negative wind stress changes between 30° S 
and 50° S have the opposite effect. The contrasting surface wind 
responses in the 30–50° S and 50–60° S bands reflect the poleward 
shifting of zonal winds over the Southern Ocean caused by GHG and O3 
forcing (Fig. 4c,d). This shift is consistent with the FAF-stress response 
to CO2-driven wind stress changes.

Conclusions
Most previous studies of SSTAC focused primarily on projected twenty- 
first-century changes29,31. Here we examined whether there is a detect-
able fingerprint pattern of human-induced SSTAC change over the 
period 1950–2014. We provide scientific evidence that a human-caused 
SSTAC signal has already emerged from the background noise of natural 
variability. Geographical patterns of SSTAC changes show increased 
SSTAC at mid-latitudes in the Northern Hemisphere and a distinctive 
meridional dipole structure at Southern Hemisphere mid-latitudes. 
These large-scale zonal features are common to observations and 
model simulations with anthropogenic forcing, and are dissimilar 
to the smaller-scale structure of natural internal variability. This  
helps to explain why the model-estimated SSTAC fingerprint 
in response to combined anthropogenic and natural external  
forcing is identifiable by the end of the twentieth century in all 
four observed SST datasets analysed here. The fingerprint is also  
robustly identifiable in all 51 model realizations of historical  
climate change.

Single-forcing experiments indicated that increases in well-mixed 
GHGs are the dominant factor in the identification of externally forced 
changes in SSTAC. Anthropogenic aerosol emissions are likely to have 
delayed the detection of this fingerprint by approximately 7–8 years 
on average. External forcing from stratospheric ozone depletion par-
tially contributed to the development of the SSTAC dipole structure at 
Southern Hemisphere mid-latitudes, whereas natural external forcing 
by volcanoes and solar irradiance changes had relatively little effect on 
the detection of a human fingerprint in SSTAC.

Model simulations and a heat budget analysis revealed that the lead-
ing physical drivers of these large-scale SSTAC changes are different in the 
two hemispheres. In the Southern Hemisphere, the impacts of changes in 
atmospheric circulation and surface wind stress on the MLD are the key 
determinant of the dipole-like SSTAC response in the Southern Ocean. In 
the mid-latitudes of both hemispheres, human-induced warming yields 
increased stratification of the upper ocean, which in turn causes a reduc-
tion of the MLD during all seasons. Year-round mixed-layer shoaling 
decreases its thermal inertia, thereby amplifying the mid-latitude SSTAC.

Human-driven amplification of the mid-latitude seasonal cycle 
of SST has important implications for future changes in the behaviour 
of marine ecosystems. The SST changes found here have the potential 
to influence both the productivity and distribution of marine species 
that constitute key food resources for human societies. Our finding of 
robust changes in the seasonality of SST should motivate more detailed 
exploration of the anthropogenically forced seasonal changes in a wide 
range of different ocean properties.
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Methods
CMIP6 experiments and models
This study used output from climate model simulations performed 
under CMIP6 (ref. 52). We focused on ten CMIP6 models that performed 
all of the following four experiments: HIST and the single-forcing 
simulations AER, GHG and NAT53. Each of the ten models had multiple 
ensemble members. Each ensemble member of a given model was 
driven by the same external forcing, but had a different manifestation 
of natural internal climate variability superimposed on the underlying 
forced response. The number of ensemble members available for each 
model and each experiment is listed in Supplementary Table 1. For each 
experiment, there were 51 realizations in total. The MMM is the average 
of the ensemble means of these ten models. The piControl simulations 
from the same ten models were used for the purpose of estimating the 
noise from internal variability (see below).

We also analysed results from an experiment with forcing by strato-
spheric ozone changes only (O3). Only four of the ten models that 
performed HIST, GHG, AER and NAT simulations provided results for 
the O3 simulation (Supplementary Table 1).

The HIST, GHG, AER, O3 and NAT experiments covered the period 
from 1850 to 2014. We focused on the 1950–2014 period for comparing 
simulations with observations of changes in the amplitude of SSTAC. 
This choice of period was dictated by improvements in the spatial 
coverage and quality of observed SST data after World War II, as well 
as by large post-1950 changes in well-mixed GHGs, anthropogenic 
aerosols and stratospheric ozone. All model output was interpolated 
to a common, regular 1° × 1° grid.

Observations
We relied on four primary SST gridded products: HadISST54, ERSST55, 
COBE56 and PCMDI57. ERSST and COBE are based on in situ measure-
ments, and HadISST and PCMDI combine in situ and satellite estimates 
of SST. Different averaging and gap-filling approaches were employed 
to infill data-sparse regions and time periods in these gridded products. 
The HadISST and PCMDI datasets are not entirely independent: the 
PCMDI dataset is HadISST1 up to 1981, and uses the NOAA Optimum 
Interpolation SST data (OI.v2)58 thereafter.

In addition to these observational SST products, we also used the 
monthly surface zonal wind from the latest-generation reanalysis of 
the European Centre for Medium-Range Weather Forecasts (ERA5)59. 
For the observed mixed layer depth (MLD), we first employed the grid-
ded monthly temperature and salinity data from the IAP product60 to 
calculate the potential density. MLD was then defined as the depth 
at which the ocean potential density exceeds the sea surface density 
at a criterion of δρ = 0.125 kg m−3, following the definition for MLD 
output (referred to as mlotst) from the CMIP6 models. There are likely 
to be substantial uncertainties in the IAP product arising from sparse 
measurements of the subsurface temperature and salinity fields in the 
Southern Ocean (particularly in the pre-Argo era of the IAP records).

We also used the information from ref. 61 to examine whether 
biases in ship SST data could be an important factor in our detection 
and attribution analysis. We found that it is unlikely that ship SST data 
biases could alter any of our findings regarding the identification of 
an SSTAC fingerprint in observations (not shown).

FAFMIP experiments
To isolate the individual effects of changes in wind stress and 
surface heat flux on SSTAC trends, we relied on output from the 
Flux-Anomaly-Forced Model Intercomparison (FAFMIP) experi-
ments. Results are from five models: ACCESS-CM2, CanESM5, 
HadGEM3-GC31-LL, MIROC6 and MRI-ESM2-0. The FAFMIP experi-
ments, branched from each model’s piControl run, prescribe a set of 
surface flux perturbations for the ocean. These perturbations were 
obtained from the ensemble mean changes simulated at the time of 
doubled CO2 by CMIP5 AOGCMs run under the 1pctCO2 scenario (in 

which atmospheric CO2 levels increase by 1% each year). We examined 
three different FAFMIP experiments: FAF-all, in which perturbations of 
surface wind stress, surface freshwater flux and surface heat flux are 
simultaneously imposed; FAF-stress, with imposed perturbations of 
surface wind stress only; and FAF-heat, with imposed perturbations 
of net surface heat flux only62.

All FAFMIP experiments considered here were run for 70 years. We 
show the anomalies of the 31–70 yr average relative to the climatology 
calculated from the full length of each model’s piControl.

Calculation of annual cycle amplitudes
For each model simulation and observation product, and at each grid 
point x and year t, we performed a Fourier analysis on the 12 monthly 
mean values of SST. The amplitude of the first harmonic was taken as 
SSTAC (Extended Data Fig. 1d). Consistent with previous work17, the first 
harmonic explained >95% of the total seasonal variance at almost all loca-
tions between 60° N and 60° S (except at regions close to the Equator). As 
an additional sensitivity study, we confirmed that our fingerprint results 
were insensitive to the definition of SSTAC. The S/N ratios and detection 
times obtained here with the first harmonic were very similar to those 
found when we defined SSTAC as the seasonal maximum SST minus the 
seasonal minimum SST at each grid point and in each year.

Pattern-based fingerprint analysis
Definition of the fingerprint. Detection methods generally require 
an estimate of the true, but unknown, climate change signal, typically 
designated as the fingerprint F(x), in response to an individual forcing 
or set of forcings63. As in previous work, we assumed F(x) to be the first 
EOF of the MMM change in SSTAC in the HIST simulations17.

Let S(i, j, x, t) represent SSTAC at grid point x and year t from the ith 
realization of the jth model’s HIST simulation, where:

i = 1,… Nr( j) (the number of realizations for the jth model)
j = 1,… Nm (the number of models used in fingerprint estimation)
x = 1,… Nx (the total number of grid-points after regridding to a 

regular 1° × 1° grid)
t = 1,… Nt (the time in years)
Here, Nr varies across models (Supplementary Table 1). For HIST, 

Nm = 10 models. Before the fingerprint analysis, all model and observed 
SSTAC fields were interpolated to a common 1° × 1° latitude/longitude 
grid. The evolution of the MMM SSTAC was calculated by first averag-
ing over an individual model’s realizations (where multiple realiza-
tions were available), and then averaging across the number of models 
available for each experiment. MMM anomalies were then defined 
at each x and t with respect to the local MMM climatological annual 
cycle amplitude. The fingerprint is the first EOF of the changes over 
time in the MMM SSTAC anomalies from the HIST experiment—that 
is, the temporal changes in the annual cycle of SST. To minimize the 
impact of sea ice on SSTAC, the domain was restricted to 60° N–60° S 
and to regions where the winter sea-ice concentration is less than 
10%. The anomalies were weighted by the square root of the cosine 
of the grid node’s latitude64 before calculating the EOF. Most of the 
discussion focuses on model fingerprints estimated over 1950–2014. 
We also calculated fingerprints for three additional analysis periods 
(1960–2014, 1970–2014 and 1980–2014). As noted in the main text, the 
spatial structure of the fingerprint patterns did not change markedly 
over these periods (Extended Data Fig. 2).

Fingerprint detection. We seek to determine whether the pattern 
similarity between the time-varying observations and F(x) shows a 
statistically significant increase over time. To address this question, 
we required control run estimates of internally generated variability 
(noise), in which we knew a priori that there was no expression of the 
fingerprint, except by chance.

This intrinsic noise was estimated using piControl output from 
the same ten models employed to calculate the HIST fingerprint. These 
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control simulations can be affected by residual long-term drift. To 
reduce the effects of such drift on estimates of the internal variability 
of SSTAC, we fitted a cubic polynomial to the full length of each model’s 
control run and then removed the fitted polynomial65,66. Fitting and 
drift removal was performed at each model grid point. Because the indi-
vidual model control runs were of unequal length, our noise estimates 
relied on the past 400 years of each model’s piControl run. This yielded 
a total of 4,000 years of concatenated control run data, and avoided 
introducing any bias associated with differing control run lengths.

Observed SSTAC estimates are expressed as anomalies relative to 
climatological means over the 1950–2014 analysis period (or over the 
alternate analysis periods in Fig. 2c). The observed temperature data 
were projected onto F(x) to obtain signal time series Zo(t):

Zo (t) =
Nx

∑
x=1

O (x, t) F (x) (1)

where O(x, t) are the observed SSTAC anomalies. This projection is 
equivalent to a spatially uncentred covariance between the patterns 
O(x, t) and F(x) at year t. The signal time series Zo(t) provides informa-
tion on the fingerprint strength in the observations. If observed pat-
terns of temperature change are becoming increasingly similar to F(x), 
Zo(t) should increase over time.

To assess whether this increase was statistically significant, we 
compared trends in Zo(t) with a null distribution for which we knew 
a priori that there was no expression of the fingerprint, except by 
chance. We derived this null distribution using C(x, t), the 4,000 yr 
concatenated noise dataset, generated from the piControl runs as 
described above. The noise time series from the control model run 
Nc(t) is the projection of C(x, t) onto the fingerprint:

Nc (t) =
Nx

∑
x=1

C (x, t) F (x) (2)

where the length of Nc(t) is 4,000 years (see above).
We estimated S/N ratios by fitting least-squares linear trends of 

increasing length L years to Zo(t), and then comparing these trends with 
the standard deviation of the distribution of maximally overlapping 
L-length trends in Nc(t) (refs. 17,37). Signal detection was stipulated 
to occur when the trend in Zo(t) exceeded and remained above the 
stipulated significance level (which was 5% in our study)22. The test was 
one-tailed, and we assumed a Gaussian distribution of trends in Nc(t). 
The start date for fitting linear trends to Zo(t) was 1950 for our baseline 
analysis, and 1960, 1970 and 1980 in the alternate analysis periods 
shown in Fig. 2c. We used a minimum trend length of 10 years, so the 
first S/N ratio (and the earliest possible detection time in the baseline 
period) was for 10 yr trends ending in 1959.

We also show S/N results that are based solely on model simulation 
output. In our model-only results, Nc(t) was calculated as in equation 
(2), but the observational estimates in equation (1) were replaced by 
S(i, j, x, t), the annual cycle amplitude information from each of the 51 
HIST simulations (grey curves in Figs. 1f and 2b).

HIST fingerprint versus single-forcing fingerprints. As noted in the 
main text, we employed two methods to study the contributions of 
individual external forcings (GHG, AER, NAT and O3) to the simulated 
SSTAC changes. In Method 1, SSTAC anomalies from individual realiza-
tions of the four single-forcing simulations were projected onto the 
common fingerprint calculated from the HIST MMM. As in the case of 
HIST, the MMMs of SSTAC from these four single-forcing experiments 
were also projected onto F(x).

In Method 2, we projected SSTAC changes from the HIST MMM and 
from individual HIST realizations onto each of the four fingerprints 
estimated from the GHG, AER, O3 and NAT multi-model average SSTAC 
changes. This yielded information on the strength of each individual 

fingerprint in the historical all-forcing simulations, and on how the 
strength of the GHG, AER, O3 and NAT fingerprints evolved with increas-
ingly longer analysis periods.

We used EOF1 for the Method 2 GHG fingerprint and EOF2 for the 
Method 2 fingerprints from AER, O3 and NAT (Supplementary Fig. 1). 
This choice was made because in the GHG simulation, EOFs 1 and 2 were 
clearly separated in terms of explained variance, with the explained 
variance associated with GHG EOF1 a factor of three larger than the 
explained variance of GHG EOF2. The latter pattern largely reflected 
tropical internal variability associated with the El Niño/Southern Oscil-
lation. In contrast, EOFs 1 and 2 were less well separated in terms of the 
explained variance in the AER, O3 and NAT simulations—their EOF1 
was very similar to EOF2 from the GHG simulation, whereas the EOF2 
patterns of AER, O3 and NAT were dominated by extratropical forced 
responses. The temporal evolution of the first and second principal 
components (PC1 and PC2, respectively) was consistent with this inter-
pretation (Supplementary Fig. 1i,j). GHG PC1 showed a large increase 
in amplitude over 1950–2014, whereas the PC1 of AER, O3 and NAT 
were dominated by interannual variability. Clearer long-term trends 
are evident in the PC2 of AER and O3, while PC2 in NAT exhibited large 
decreases immediately after major volcanic eruptions.

SSTAC from observations and HIST runs was projected onto these 
four single-forcing fingerprints (Supplementary Fig. 2). For the projec-
tions onto the GHG fingerprint, all 51 model HIST realizations and three 
of the four observational datasets eventually exceeded the 5% signifi-
cance threshold. S/N levels were systematically lower for the AER, NAT 
and O3 fingerprints, which were therefore not as clearly identifiable 
in the HIST realizations or observations as the GHG fingerprint. This 
provides support for a key finding from our Method 1 analysis: forcing 
by well-mixed GHGs was the dominant factor in the identification of 
externally forced changes in SSTAC.

We note that in Method 2, the NAT fingerprint was identifiable 
at the 5% level in 88% of the HIST realizations and in two of the four 
observed SSTAC datasets (Supplementary Fig. 2d). While there were 
small changes over time in the solar and volcanic forcing over 1950–
201439, the behaviour of PC1 of the NAT SSTAC changes (Supplementary 
Fig. 1i) suggested that NAT forcing is unlikely to produce a significant 
multi-decadal trend in SSTAC. Instead, the identification of the NAT fin-
gerprint in the HIST SSTAC data appears to be due to the spatial similarity 
between certain large-scale features of the GHG and NAT fingerprints 
(compare Supplementary Fig. 1a,f). Thus in Method 2 (which we do not 
focus on in our fingerprint analysis) the statistical problem of degen-
eracy67 of the normalized GHG and NAT fingerprints hampered reliable 
assessment of the relative contributions of GHG and NAT forcing to the 
simulated SSTAC changes. In Method 1, however, the larger amplitude 
of the SSTAC response to GHG forcing (relative to NAT forcing) was 
preserved, which is why the HIST fingerprint could be identified in the 
individual GHG realizations, but not in the individual NAT realizations.

The uncentred pattern correlation between GHG EOF1 and NAT 
EOF2 was higher than the pattern correlations between GHG EOF1 and 
the EOF2 patterns of other single-forcing experiments (Supplemen-
tary Table 2). This similarity may arise from major tropical volcanic 
eruptions in the 1950–2014 analysis period (Agung, El Chichón and 
Pinatubo) and the associated shifts of the intertropical convergence 
zone68, which in turn could affect the latitudinal location of regions of 
mid-latitude increases in SSTAC.

Simplified mixed-layer heat budget analysis
Our mixed-layer heat budget model is a simplified version of the tra-
ditional mixed-layer heat budget model that takes into account only 
the dominant heat fluxes and MLD affecting the temperature of the 
oceanic mixed layer:

dT
dt

≈ Qnet −Qb
ρ × Cp ×MLD (3)
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The left-hand side is the ocean temperature (T) tendency, and 
the right-hand side is the estimate based on Qnet, Qb and MLD. These 
terms are functions of month, latitude and longitude and are calculated 
from HIST runs. The terms ρ and Cp are the density and specific heat 
of seawater, respectively.

For the changes in the annual cycle (AC) amplitude of dT/dt:

AC (dT2dt )
− AC (dT1dt )

≈ AC (
Qnet2 −Qb2

ρ × Cp ×MLD2
) − AC (

Qnet1 −Qb1
ρ × Cp ×MLD1

)
(4)

where ‘1’ represents the average of the period 1950–1979 and ‘2’ rep-
resents the average of the period 1985–2014. The changes are the dif-
ference between these two 30 yr periods. We also held Qnet and MLD 
constant in equation (4) to isolate the effects due to MLD change and 
Qnet change:

ΔMLDeffect = AC (
Qnet1 −Qb1

ρ × Cp ×MLD2
) − AC (

Qnet1 −Qb1
ρ × Cp ×MLD1

) (5)

ΔQnet effect = AC (
Qnet2 −Qb2

ρ × Cp ×MLD1
) − AC (

Qnet1 −Qb1
ρ × Cp ×MLD1

) (6)

In equations (5) and (6), the Qb and Qnet terms are for the same 
analysis period. Results are insensitive to whether Qb is chosen from 
period 1 or period 2.

We examined the effect of MLD change in terms of its absolute 
change (equation (7)) and relative change (equation (8)). As shown 
in equation (7), we assumed a summer MLD change to be added to all 
the months from the base period. In terms of relative change, MLD was 
assumed to shoal by 5% everywhere and in every month relative to the 
background value (equation (8)).

ΔMLDsummer effect = AC (
Qnet1−Qb1

ρ×Cp×(MLD1+(MLD2,summer−MLD1,summer)
)

−AC ( Qnet1−Qb1
ρ×Cp×MLD1

)
(7)

ΔMLD5%shoaling effect = AC (
Qnet1−Qb1

ρ×Cp×(MLD1×0.95)
)

−AC ( Qnet1−Qb1
ρ×Cp×MLD1

)
(8)

Data availability
The CMIP6 historical, single-forcing and FAFMIP simulation outputs  
are available via the Earth System Grid of the Program for Climate 
Model Diagnosis and Intercomparison (PCMDI): https://esgf-node. 
llnl.gov/search/cmip6/. HadISST data are available at: https:// 
www.metoffice.gov.uk/hadobs/hadisst. ERSST data are available  
at: https://www.ncei.noaa.gov/products/extended-reconstructed-sst. 
COBE data are available at: https://psl.noaa.gov/data/gridded/data.
cobe2.html. PCMDI data are available at: https://doi.org/10.22033/
ESGF/input4MIPs.16921. ERA5 data are available at: https://www.
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. IAP data 
are available at: https://climatedataguide.ucar.edu/climate-data/
ocean-temperature-analysis-and-heat-content-estimate-institute- 
atmospheric-physics. The processed data are available via Figshare at 
https://doi.org/10.6084/m9.figshare.23271569 (ref. 69).
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Extended Data Fig. 1 | Spatial patterns and zonal mean of the climatology 
of SST annual cycle amplitude (SSTAC) from four different observational 
products and from the multi-model mean (MMM) of the HIST simulations. 
a Average of four different observed SST datasets. b HIST MMM. c Zonal-mean 

climatology of the HIST MMM and individual observed SST datasets. d Monthly 
climatology of SST averaged between 30˚N-45˚N from observations (dashed 
curves) and the fits of the first harmonic obtained through Fourier analysis (solid 
curves). Results are calculated over 1950 to 2014.
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Extended Data Fig. 2 | Leading EOF of SSTAC estimated from the HIST MMM. a-d Results for four different analysis periods. The explained variances are shown in 
brackets.
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Extended Data Fig. 3 | S/N ratios from two selected CMIP6 models. Results are as in Fig. 2b, but the ‘model only’ S/N ratios here (in grey) are from two models only: 
CNRM-CM6-1 and MRI-ESM2-0. Individual realizations from each model can have appreciable differences in their S/N behavior.
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Extended Data Fig. 4 | Scatterplot between the climate sensitivity of the 10 CMIP6 models analyzed here and the final value of the S/N ratio for the 65-year 
analysis period from 1950 to 2014. The effective climate sensitivities are based on the results from ref. 40. The correlation between ECS and S/N ratio at 2014 is 0.55.
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Extended Data Fig. 5 | S/N ratios from the GHG, AER, O3, and NAT single-
forcing runs. Results are based on use of the same HIST fingerprint, which is 
searched for in the SSTAC changes of each single-forcing run (Method 1). a–d 
MMM result (the black curve) from GHG (a), AER (b), O3 (c) and NAT (d) single-
forcing runs and results from individual realizations (the grey curves). GHG, 

AER, and NAT results are from 10 models with a total of 51 realizations; only four 
models with a total of 26 realizations were available for calculating O3 S/N ratios. 
The horizontal purple line is the 5% significance level. For further details refer to 
Methods.
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Extended Data Fig. 6 | Zonal-mean monthly-mean SST trends over 1950 to 2014. a The ensemble mean of four observed datasets. b-d The MMM of the HIST, GHG, 
and O3 simulations. In contrast to Fig. 4, the trends are not expressed as departures from annual-mean trends.
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Extended Data Fig. 7 | Zonal-mean monthly-mean SST trends over 1950 to 2014 in four observed datasets. a-d Results from four observed datasets: HadISST (a), 
ERSST (b), COBE (c) and PCMDI (d). The results are expressed as departures from annual-mean trends.
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Extended Data Fig. 8 | Changes of annual cycle amplitude of SST tendency 
between 1950–1979 and 1985–2014 due to MLD changes. a Changes of annual 
cycle when it is assumed to have a consistent summer MLD change for all 12 

months (see Eq. 7). b Changes of annual cycle when MLD is assumed to shoal by 
5% at every location and in every month relative to the background monthly value 
(see Eq. 8).
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Extended Data Fig. 9 | Zonal-mean monthly-mean trends over 1950 to 2014 in MLD and zonal wind stress. a-b MLD trends from the IAP product and the MMM of 
the HIST simulations, respectively. Grey contours highlight the large MLD trends of −6 and −8 m/decade. c-d Zonal wind stress trends from ERA5 and the MMM of the 
HIST simulations.
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