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ABSTRACT: We investigate changes in the vertical structure of the ocean temperature annual cycle amplitude (TEMPAC)
down to a depth of 300 m, providing important insights into the relative contributions of anthropogenic and natural influen-
ces. Using observations and phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations, we perform a
detection and attribution analysis by applying a standard pattern-based “fingerprint” method to zonal-mean TEMPAC anom-
alies for three major ocean basins. In all model historical simulations and observational datasets, TEMPAC increases signifi-
cantly in the surface layer, except in the Southern Ocean, and weakens within the subsurface ocean. There is a decrease in
TEMPAC below the annual-mean mixed layer depth, mainly due to a deep-reaching winter warming signal. The temporal
evolution of signal-to-noise (S/N) ratios in observations indicates an identifiable anthropogenic fingerprint in both surface
and interior ocean annual temperature cycles. These findings are consistent across three different observational datasets, with
variations in fingerprint detection time likely related to differences in dataset coverage, interpolation method, and accuracy.
Analysis of CMIP6 single-forcing simulations reveals the dominant influence of greenhouse gases and anthropogenic aerosols
on TEMPAC changes. Our identification of an anthropogenic TEMPAC fingerprint is robust to the selection of different anal-
ysis periods. S/N ratios derived with model data only are consistently larger than ratios calculated with observational signals,
primarily due to model versus observed TEMPAC differences in the Atlantic. Human influence on the seasonality of surface
and subsurface ocean temperature may have profound consequences for fisheries, marine ecosystems, and ocean chemistry.

SIGNIFICANCE STATEMENT: The seasonal cycle is a fundamental aspect of our climate, and gaining insight into
how anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance. Using observations
and CMIP6 model simulations, this research applies a pattern-based detection and attribution method to ocean tempera-
ture annual cycle amplitude (TEMPAC) down to 300 m across three major ocean basins. Key findings reveal significant in-
creases in surface layer TEMPAC except in the Southern Ocean and a weakening of TEMPAC within the subsurface ocean.
Importantly, the analysis confirms human influence on TEMPAC. These findings underscore the profound influence of
human-caused climate change on the world’s oceans and have important implications for marine ecosystems, fisheries, and
ocean chemistry.

KEYWORDS: Ocean; Ocean dynamics; Climate; Climate change; Pattern detection

1. Introduction

The annual cycle is one of the most fundamental elements of
climate, driving over 90% of the seasonal temperature variability
across much of the globe (Santer et al. 2018; Shi et al. 2024). The
seasonal variation in incoming solar radiation has influence from
the top of the atmosphere to the subsurface ocean. In turn,
seasonal changes in temperature, moisture, and many other
variables can influence human health, water supplies, agricul-
ture, energy demand, and marine ecosystems.

The influence of human activities during the historical pe-
riod has been identified in many aspects of the climate system
(Eyring et al. 2021), including the substantial warming of the

surface (Hegerl et al. 1996; Stott et al. 2000), the troposphere
(Santer et al. 1996, 2013, 2023; Blackport et al. 2023), and the
ocean (Barnett et al. 2005; Levitus et al. 2005; Wijffels et al.
2016; Shi et al. 2018; von Schuckmann et al. 2020; Cheng et al.
2019; Gleckler et al. 2016). Human fingerprints have also been
identified in atmospheric and ocean circulation (Chemke and
Yuval 2023; Roemmich et al. 2007; Shi et al. 2021; Swart and
Fyfe 2012; Thompson and Solomon 2002; Marshall 2003) and in
precipitation and atmospheric moisture (Zhang et al. 2007;
Santer et al. 2007; Marvel and Bonfils 2013; Bonfils et al. 2020).
The changes in these and many other variables are primarily
due to anthropogenic forcing by well-mixed greenhouse gases
(GHGs), ozone, and aerosols.

The scientific challenge in such climate change detection
and attribution (D&A) studies is to separate human influen-
ces on climate from climate fluctuations caused by natural ex-
ternal forcings and internal variability. The basic premise is
that different human and natural influences on climate have
different characteristic spatial patterns or “fingerprints.” Most
of the focus in pattern-based fingerprint research has been on
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long-term annual-mean changes in the climate system (Gillett
et al. 2013; Bindoff et al. 2013; Stott et al. 2000; Santer et al.
2019; Pierce et al. 2012; Gleckler et al. 2012). Externally forced
changes in the amplitude and/or phase of the annual cycle have
received less attention in formal fingerprint studies.

There is growing evidence, however, that human activities
are now influencing key aspects of the annual cycle of tropo-
spheric temperature (Santer et al. 2018, 2022), sea surface tem-
perature (SST; Shi et al. 2024; Liu et al. 2024), land surface
temperature (Qian and Zhang 2015; Duan et al. 2019), the wa-
ter cycle (Marvel et al. 2017; Terray et al. 2012), and sea ice
(Min et al. 2008). Previous work has shown, for example, that a
human-caused signal in the annual cycle of tropospheric tem-
perature (TTAC) is robustly identifiable in CMIP6 simulations
of historical climate change and in satellite observations (Santer
et al. 2018, 2022). The fingerprint of externally forced TTAC

changes had distinctive midlatitude increases in TTAC in both
hemispheres, with larger increases in the Northern Hemisphere
(NH) than in the Southern Hemisphere (SH) and with TTAC de-
creases in subpolar regions of the SH. The hemispheric asym-
metry in TTAC changes was related to land–ocean differences
in heat capacity and hemispheric differences in land fraction
(Santer et al. 2022).

An independent fingerprint analysis of changes in the SST an-
nual cycle (SSTAC) identified an externally forced pattern that
was consistent with the large-scale geographical pattern of
changes in the annual cycle of TT: increased SSTAC in NH mid-
latitudes and a distinctive meridional dipole structure at SHmid-
latitudes (Shi et al. 2024). In the NH midlatitudes, the SSTAC

increases were primarily due to GHG-driven mixed layer depth
changes associated with enhanced stratification (Alexander et al.
2018; Chen andWang 2015; Liu et al. 2020; Jo et al. 2022; Dwyer
et al. 2012; Shi et al. 2024). The reduction in thermal inertia due
to the year-round shoaling of the mixed layer contributed to the
enhancement of midlatitude SSTAC (Shi et al. 2024). The di-
pole-like SSTAC response in SH midlatitudes, however, was
largely due to enhanced and poleward-shifted westerly winds
over the Southern Ocean (Zhang et al. 2024).

The goal of the present study is to interrogate the annual
cycle of temperature changes below the ocean surface and to
determine 1) whether an anthropogenic fingerprint is identifi-
able in the vertical structure of TEMPAC down to 300 m, in
both state-of-the-art historical simulations and in a variety of
observational products; and 2) whether analysis of the subsur-
face structure yields further insights into the physical drivers of
TEMPAC changes. While previous investigations have applied
fingerprinting approaches to annual-mean changes in the verti-
cal structure of ocean temperature (Barnett et al. 2005; Pierce
et al. 2006, 2012) or to ocean heat content (Gleckler et al. 2012),
no prior study has performed fingerprinting with TEMPAC.
This previous work revealed that since 1960, an identifiable an-
thropogenic warming signal has penetrated the world’s oceans,
with the vertical structure of warming varying by basin (Barnett
et al. 2005). In the North and South Atlantic Oceans, the large-
scale convective overturning circulation led to deeper penetra-
tion of human-induced warming, while a warming signal was
more confined to the upper layers of the northern Pacific and
Indian Oceans.

Anthropogenic changes in greenhouse gases and aerosols also
yield detectable changes in ocean salinity (Pierce et al. 2012;
Swart et al. 2018) and in water mass properties. In the latter
case, analysis of model simulations indicates that by 2020, 20%–

55% of the Atlantic, Pacific, and Indian Ocean Basins have an
emergent anthropogenic water mass signal (Silvy et al. 2020).
All of these previous investigations of annual-mean changes
in ocean temperature, salinity, and water mass properties pro-
vide robust evidence for the existence and penetration of an-
thropogenic signals into the subsurface ocean. Whether these
annual-mean changes are accompanied by robust seasonal
changes in subsurface ocean properties is the focus of our at-
tention here. As we will show, the vertical- and basin-scale
structure of TEMPAC changes is complex, with both enhance-
ment and weakening of TEMPAC in specific layers and re-
gions. Importantly, many of these vertical features in TEMPAC

are common to model simulations of historical changes and
observations.

The structure of our paper is as follows. Section 2 introdu-
ces the observational data, model simulations, and methods
used in this study. Section 3 discusses the vertical structure of
trends based on observations and CMIP6 models. Section 4
presents the results of a signal-to-noise (S/N) analysis of the
vertical structure of TEMPAC change for three ocean basins:
the Atlantic, Pacific, and Indian Oceans. Physical mechanisms
driving the TEMPAC changes are considered in section 5. Re-
sults from the analysis of single-forcing runs, providing esti-
mates of contributions from individual external forcings, are
considered in section 6. In section 7, we perform sensitivity
tests to investigate how model versus observed differences in
S/N behavior are affected by the choice of analysis period and
the inclusion of observational information from individual
ocean basins. Section 8 provides conclusions for this study.

2. Data and methods

a. Observational datasets

We use three gridded estimates of observed ocean potential
temperature. These are datasets from the Institute of Atmo-
spheric Physics (IAP), Met Office Hadley Centre (EN4), and
the subsurface temperature analysis led by Ishii (hereafter
Ishii). All three observational products are based on a variety of
measurements, including shipboard conductivity–temperature–
depth (CTD), mechanical bathythermograph, expendable bathy-
thermograph (XBT), and Argo profiles. The IAP ocean poten-
tial temperature analysis has a horizontal resolution of 18 3 18
with 41 vertical levels from the surface down to 2000 m and
spans the period 1940 to the present (Cheng et al. 2018). Data
gaps are filled by a first-guess field incorporating time-evolving
outputs from an ensemble of models taken from phase 5 of the
Coupled Model Intercomparison Project (CMIP5). EN4 (version
EN4.2.2) is a subsurface temperature dataset for the global
oceans, spanning 1900 to the present with monthly resolution
(Good et al. 2013). The XBT bias was corrected using the
methods of Gouretski and Reseghetti (2010). The EN4 data
are on a regular 18 3 18 grid with 42 vertical depth levels in
the upper 2000 m. The subsurface temperature analysis from
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Ishii has a horizontal resolution of 18 3 18 with 28 vertical
levels from the surface down to 3000 m and spans the period
from 1955 to the present (Ishii et al. 2005). Missing data are
filled with values interpolated spatially and temporally using
monthly deviations from nearby grid points.

All three observational ocean temperature datasets also
provide monthly salinity. To estimate the mixed layer depth
(MLD), we utilize the gridded monthly temperature and sa-
linity data from individual datasets to calculate the potential
density. MLD is then defined as the depth at which the ocean
potential density exceeds the surface layer density at a crite-
rion of dr 5 0.125 kg m23, following the definition for MLD
output (referred to as “mlotst”) from the CMIP6 models.
This facilitates the direct comparison of MLD in simulations
and observations.

b. CMIP6 model simulations

This study uses output (ocean temperature and MLD) from
climate model simulations performed under CMIP6 (Eyring
et al. 2016). We focus on 10 CMIP6 models that performed all
of the following four experiments: the historical all-forcing
simulation (HIST) and single-forcing simulations with anthro-
pogenic aerosols (AER), well-mixed GHGs, and purely natu-
ral changes in solar irradiance and volcanic aerosols (NAT)
(Gillett et al. 2016). Each of the 10 models has multiple en-
semble members. To allow a comparison of historical simula-
tions with recent ocean observations through to 2022, we
extend the HIST runs (which end in 2014) with output from
one selected scenario of future climate change, shared socio-
economic pathway 2-4.5 (SSP245). Each SSP245 run was ini-
tialized from the end of a counterpart HIST run. The number
of ensemble members available for each model and each ex-
periment is listed in Table 1.

For each historical experiment, there are 51 realizations in
total. Because not all HIST simulations had an SSP245 exten-
sion, there are only 42 HIST1 SSP245 realizations. For simplic-
ity, our use of the term “HIST” throughout the paper covers
both the 51 HIST realizations ending in 2014 and the 42 HIST
realizations extended to 2022 with SSP245 output. The multi-
model mean (MMM) is the average of the ensemble means of
these 10 models. The preindustrial control (piControl) simula-
tions from the same 10 models are used for the purpose of esti-
mating the noise from natural internal variability. Single-forcing
experiments end in 2020. All model output was interpolated to
a common, regular 18 3 18 horizontal grid. In the vertical direc-
tion, model fields were interpolated to depths of 5, 10, 20, 30,
50, 75, 100, 125, 150, 200, and 300 m. For each model, we then
calculate zonal-mean temperature fields for the Pacific, Atlan-
tic, and Indian Ocean Basins; the longitudes used to separate
these basins in the Southern Ocean are 1478E, 698W, and 208E
(respectively).

c. Calculation of annual cycle amplitudes

For each model simulation and observational product, and
at each grid point x in latitude/depth/basin space and year t,
we performed a Fourier analysis on the 12 monthly mean val-
ues of zonal-mean ocean temperature for each year. We

define the annual cycle amplitude (TEMPAC) as the ampli-
tude of the first harmonic. Consistent with previous work with
TTAC (Santer et al. 2018), the first harmonic explains .95%
of the total seasonal variance at almost all locations between
608N and 608S in the upper 300 m of the ocean. There are two
exceptions: 1) regions poleward of 608N/S, which are influ-
enced by sea ice and have limited observational coverage; and
2) the deep tropics between 158S and 158N, where there is lit-
tle seasonal change in incoming solar radiation. In this study,
we exclude both regions from our fingerprint analysis, thus fo-
cusing attention on regions which experience appreciable sea-
sonal cycles in upper-ocean temperature and are relatively
unaffected by sea ice. After the calculation of the annual cycle
on the native grid of the model, TEMPAC is interpolated ver-
tically, which provides a uniform basis for comparing the ver-
tical structure of modeled and observed TEMPAC changes
and for performing the fingerprinting.

d. Pattern-based fingerprint method

To test whether a TEMPAC response to external forcing
can be identified in observations, we first need to estimate this
response using the CMIP6 model simulations.

1) DEFINITION OF THE FINGERPRINT

The fingerprint F(x) is the first EOF of the changes over
time in the MMM TEMPAC anomalies from the HIST
experiment}i.e., the temporal changes in the annual cycle of
zonal-mean temperature as a function of depth and basin. The
domain is restricted to 608S–608N, excluding 158S–158N. The
anomalies are weighted by the square root of the cosine of
the grid node’s latitude and the thickness of layers (van den Dool
et al. 2000) before calculating the EOF. Our discussion focuses
on model fingerprints estimated from 1980 to 2022. Due to
the increased and sustained use of XBT, global upper-ocean
temperature sampling stabilizes at around 75% from 1980
onward (Lyman and Johnson 2008; Meyssignac et al. 2019),

TABLE 1. CMIP6 models and the number of model realizations
used in this study. The left column shows the 10 CMIP6 models
for which HIST, GHG, AER, and NAT runs were available.
The middle and right columns show the number of realizations
available for each model and experiment. The identifiers of
these realizations (r1, etc.) are indicated in brackets.

Model names

No. of realizations
used in HIST, GHG,

AER, and NAT

No. of realizations
used in SSP245 for

2015–22

ACCESS-CM2 3 (r1–r3) 3 (r1–r3)
ACCESS-ESM1-5 3 (r1–r3) 3 (r1–r3)
CanESM5 15 (r1–15) 10 (r1–15)
CESM2 2 (r1 and r3) 1 (r1)
CNRM-CM6-1 3 (r1–r3) 3 (r1–r3)
HadGEM3-GC31-LL 4 (r1–r4) 4 (r1–r4)
IPSL-CM6A-LR 10 (r1–r3) 7 (r1–r6, r10)
MIRO6 3 (r1–r3) 3 (r1–r3)
MRI-ESM2-0 5 (r1–r3) 5 (r1–r3)
NorESM2-LM 3 (r1–r3) 3 (r1–r3)
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thus providing adequate coverage for estimating large-scale
observed ocean temperature changes.

2) FINGERPRINT DETECTION

Our detection method assesses whether the similarity be-
tween observed TEMPAC patterns and F(x) shows a statisti-
cally significant trend over time. The observed TEMPAC

anomalies are projected onto F(x) to derive a signal time se-
ries Zo(t). We assess the statistical significance of trends in
Zo(t) by comparing them to a null distribution derived from
noise time series Nc(t). Noise here is estimated using the
4000-yr concatenated noise dataset from the piControl runs of
10 models (using the last 400 years from each model). Signal
detection occurs when the trend in Zo(t) exceeds the 5% sig-
nificance level and then remains continuously above this level
for all longer analysis periods. Model-only results are also com-
puted, replacing observational estimates of TEMPAC changes
with changes from HIST simulations. The baseline analysis uses
a minimum trend length of 10 years. Our primary focus is on
the period 1980–2022. Additionally, we test the sensitivity of
our fingerprint results to the use of different analysis periods

(see section 7a). More details on the fingerprinting approach
can be found in Shi et al. (2024).

3. Trends and forced responses of TEMPAC

Observed patterns of TEMPAC trends during the analysis
period (1980–2022) exhibit a common vertical structure in most
ocean basins (Fig. 1). Above the summertime (or annual mean)
MLD in each hemisphere, TEMPAC trends are predominantly
positive in most ocean regions, except in the Southern Ocean
(particularly south of 508S), where they are negative (albeit
weaker). This large-scale upper-ocean trend pattern is consis-
tent with the results from an independent analysis of changes in
the annual cycle of SST (SSTAC; Shi et al. 2024). Climatologi-
cally, TEMPAC is largest in the midlatitudes in both hemi-
spheres and above the wintertime MLD, decreasing markedly
in amplitude below the wintertime MLD.

In addition to the near-surface increases noted above,
TEMPAC decreases in certain subsurface regions, such as at
50–100-m depth in the South Atlantic and South Pacific and
at midlatitudes in the North Pacific. Negative trends penetrate
deeper in the higher latitudes in the North Atlantic and North

FIG. 1. Observed trends in zonal-mean TEMPAC over the period 1980–2022 for three different datasets and ocean basins: (a)–(c) Trends
from IAP, (d)–(f) trends from Ishii, and (g)–(i) trends from EN4. Results are for the (left) Pacific, (middle) Atlantic, and (right) Indian
Ocean Basins. The gray contours are climatological TEMPAC values over 1980–2022 for the corresponding basin and dataset. Purple, green,
and red curves show the summertime (July–September mean for the NH or January–March mean for the SH), annual mean, and winter-
time MLD, respectively, averaged over the analysis period.
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Pacific. These reductions in TEMPAC primarily occur be-
tween the summertime MLD (purple curve in Fig. 1) and win-
tertime MLD (red curve in Fig. 1)}that is, within the lower
part of the seasonal thermocline.

There are also some notable differences across the three
observed datasets. The results from the IAP and Ishii datasets
are generally consistent in terms of their spatial patterns and
trend magnitudes, with an uncentered pattern correlation of
R 5 0.74 for the three concatenated basin zonal averages (i.e.,
when the patterns for the three basins are considered jointly
rather than individually). In all three basins, however, the
Ishii data have larger negative TEMPAC trends in the SH rel-
ative to the IAP data (Figs. 1a–f). Compared with the other
two datasets, the EN4 dataset shows larger long-term trends
in the surface layer and is noticeably different from the other
two datasets in the North Atlantic above the summertime
MLD (Figs. 1g–i). In the North Pacific and North Atlantic,
the EN4 dataset has weak negative trends in the midlatitudes,
where the mean annual cycle is strongest (see contours in
Fig. 1). The uncentered pattern correlations between TEMPAC

trends in EN4 and IAP and between TEMPAC trends in EN4
and Ishii are R 5 0.53 and R 5 0.36, respectively. These dif-
ferences across datasets reflect the structural uncertainty aris-
ing from differences in the choices of raw data analyzed, bias
correction procedures, and gap-infilling methods. The differ-
ences across datasets are also sensitive to the choice of analy-
sis period (see section 7). All three datasets, however, show
generally positive TEMPAC changes in the surface layer and
negative TEMPAC changes in the subsurface ocean.

We obtain an estimate of the simulated TEMPAC response
to combined anthropogenic and natural external forcing by
EOF analysis of the HIST MMM TEMPAC changes over 1980–

2022. This estimate is the fingerprint F(x)}the first EOF mode
(see section 2d). The fingerprint displays a number of large-
scale features evident in the observed TEMPAC trends in Fig. 1.
Examples of such common features include increases in zonal-
mean TEMPAC in the surface layers and decreases south of
;508S and below the annual mean MLD (Figs. 2a–c). Consis-
tent with previous findings involving tropospheric temperature
and SST, F(x) exhibits considerable hemispheric asymmetry in
the amplitude of TEMPAC changes, with larger midlatitude
increases in upper-ocean TEMPAC in the North Pacific and
North Atlantic than in the South Pacific and South Atlantic
(Santer et al. 2018, 2022; Shi et al. 2024). Calculation of F(x)
using only two realizations from each model yields very simi-
lar patterns to those shown in Fig. 2, pointing toward the ro-
bustness of the forced response. In observations, a similar
hemispheric asymmetry in TEMPAC change is found clearly
only in the Pacific Ocean Basin in the IAP and Ishii datasets
(Figs. 1a,d).

The time evolution of the first principal component of the
HIST MMM annual cycle changes shows a steady increase dur-
ing the analysis period 1980–2022 (see Fig. 2d). There are two
major decreases before the year 2000, which are linked to pertur-
bations to the annual cycle arising from the cooling effects of the
El Chichón and Pinatubo volcanic eruptions. The large initial sig-
natures of these two eruptions on TEMPAC are clearly appar-
ent in the NAT experiment (not shown). Annual cycle
amplitude recovers to pre-eruption levels within 3–4 years.

In the following section, we consider some of the basic S/N
properties of TEMPAC before evaluating whether a model-
predicted fingerprint of forced changes in TEMPAC is statisti-
cally identifiable in observations and individual model HIST
realizations.

FIG. 2. The HIST MMM fingerprint pattern of TEMPAC, which is defined here as the EOF1 of the MMM TEMPAC change over the
period 1980–2022. (a)–(c) The results for the three basins shown here are the regression patterns on the (d) standardized first principal
component. The variance explained by this first mode is approximately 51%.
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4. Results of local S/N and fingerprint analysis

a. Local S/N analysis

Before conducting the pattern-based S/N analysis, we first
calculate the S/N ratios at individual grid points in the zonal-
mean TEMPAC fields of the three ocean basins. Following the
definition from previous studies (Deser et al. 2014; Santer
et al. 2019), local S/N is the ratio between the trend of the
ensemble-mean field at an individual location (in this case, the
latitude band at a particular depth and for a given ocean basin)
and the standard deviation of the trend across realizations and
models at the same location. In contrast to the analysis of single-
model large initial condition ensembles (Santer et al. 2019), the
between-realization standard deviation of the trend estimated
here does not reflect internal variability alone}it is also
affected by signal and noise differences across the 10 models
in the MMM (Hawkins and Sutton 2009; Lehner et al.
2020).

The vertical and latitudinal structure of the local signal
(Figs. 3a–c) is broadly consistent with the fingerprint patterns
inferred from the EOF analysis (Figs. 2a–c). The local noise is

largest in the surface layer and decreases markedly below the
annual-mean MLD (Figs. 3d–f). Dividing the signal trends in
row 1 of Fig. 3 by the between-realization noise trends in row
2 yields the S/N ratios in Figs. 3g–i. The largest local S/N ra-
tios are located in the NH mid- to high latitudes, which is con-
sistent with findings from previous studies for TTAC (Santer
et al. 2018, 2022). The meridional dipole structure of trends
between 308 and 608S is apparent in all three ocean basins,
with |S/N| . 1. Smaller areas with significant local S/N ratios
also occur below 50 m. Although the TEMPAC changes in the
ocean interior are smaller than those in the surface layer, the
following section shows that the interior ocean also contrib-
utes to the detection of the model-predicted latitude–depth
fingerprint in observation-based data and individual HIST
realizations.

b. Pattern-based S/N analysis

As described above (see section 2d), we use a standard
pattern-based method to determine whether the model-simulated
externally forced fingerprint of TEMPAC changes is statistically

FIG. 3. Local signals, noise, and S/N ratios in CMIP6 HIST realizations. (a)–(c) Signal: trends of zonal-mean TEMPAC over the period
1980–2022 in the MMM. As in Fig. 1, purple, green, and red curves show the climatological summertime, annual mean, and wintertime
MLD. (d)–(f) Noise: standard deviation of the 42 individual TEMPAC trends, which are weighted to account for model differences in the
number of realizations. (g)–(i) Ratio between signal and noise. Stippling in (g)–(i) denotes grid points where |S/N|. 1.
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identifiable in historical observations (Hasselmann 1979; Santer
et al. 2013). Recall that the fingerprint is obtained from the
multimodel average TEMPAC changes in the HIST simula-
tions (Figs. 2a–c). The signal in Fig. 4a is a measure of the simi-
larity between the fingerprint and the time-varying spatial
features of ocean temperature change in observations or in in-
dividual HIST simulations. Similarly, the noise in Fig. 4b con-
tains information on the correspondence between the fingerprint
and time-varying spatial features of internal variability in model
control runs. The values of S, N, and the S/N ratio (Fig. 4c) are
given for a range of time scales L (in years), where L is the
length of the analysis period used to calculate the least squares
linear trends since the start year (1980 here).

We first consider the behavior of the signal. As expected,
the model spread in signal trends (the gray lines in Fig. 4a)
decreases with increasing length of the analysis period. This
decrease in signal spread arises because the amplitude of the
noise superimposed on the signal is markedly reduced with
larger L (Fig. 4b). With longer analysis periods, therefore,
there is less random similarity between the searched-for finger-
print and intrinsic variability patterns (Santer et al. 2018, 2022;
Shi et al. 2024). Note that in all model- and observation-based
results in Fig. 4a, signal trends decrease markedly for L-year
trends ending after 1991, recovering gradually over the following

decade, and then remain positive for L greater than 20–25 years.
This pronounced decrease in signal strength is associated with
the effects of the Pinatubo eruption in June 1991. As our results
indicate, there is both model and observational evidence that
Pinatubo perturbed the annual cycle of zonal-mean ocean
temperature in the uppermost 300 m of the Pacific, Atlantic,
and Indian Oceans.

Consistent with the discrepancies found in the observa-
tional trend patterns in Fig. 1, the EN4 dataset has signal be-
havior very different from that of IAP, Ishii, and the model
simulations (Fig. 4a). For L greater than roughly 18 years, sig-
nals estimated with EN4 data are always smaller than in IAP,
Ishii, and all model HIST realizations. After Pinatubo, the sig-
nal strength inferred from EN4 requires decades to return to
positive values}far longer in any other case. Our results im-
ply that the signal behavior in EN4 is well outside the range
of what could be plausibly expected due to internal variability
or large intermodel differences. The EN4 signal results are
more consistent with those in IAP, Ishii, and the HIST runs
after the 1990s (see section 7).

A key result from Fig. 4c is that the model zonal-mean fin-
gerprint of TEMPAC changes is identifiable with high statisti-
cal confidence (i.e., at the 5% significance level or better) in all
three observational datasets. In the case of the EN4 dataset,

FIG. 4. Signal, noise, and S/N ratios in models and observed TEMPAC obtained with a standard pattern-based
fingerprint method. (a) The signals are calculated by projecting TEMPAC from different datasets and HIST realizations
onto the fingerprint estimated from the HIST MMM and then by fitting linear trends of increasing length L years to the
resulting time series. (b) The noise is estimated by projecting CMIP6 control run TEMPAC data onto the same finger-
print, fitting nonoverlapping L-year trends to the resulting projection time series, and then calculating the standard devi-
ation of the L-year trend distribution. (c) Time scale–dependent S/N ratios for trends calculated from signal and noise
time series for the period 1980–2022. The HIST MMM result is the black curve; results from individual HIST runs are
the gray curves. The colored lines denote S/N ratios estimated by searching for the HIST MMM TEMPAC fingerprint in
three different observational datasets. The horizontal purple line is the 5% significance level.
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however, S/N only surpasses the critical 5% threshold for the
longest analyzed period (i.e., for 43-yr trends ending in the year
2022). The TEMPAC fingerprint is also identifiable at the 5%
level in all 51 individual HIST realizations (gray curves in
Fig. 4c). The detection year in the model realizations invariably
occurs before 2004. This result is consistent with the detection
time of SSTAC change found in Shi et al. (2024). Our results
highlight the robustness of the externally forced TEMPAC sig-
nal to model differences in the imposed anthropogenic and nat-
ural forcing, in the response to forcing, and in the amplitude
and patterns of intrinsic variability.

The fingerprint for TEMPAC changes is a complex function
of depth and basin, often displaying a reversal in the sign of
change between the summertime mixed layer and the portion
of the water column extending from the bottom of the mixed
layer to 300 m (Fig. 2). To isolate the contributions of differ-
ent layers to the overall S/N results in Fig. 4, we examined the
S/N properties of each of the 11 individual layers comprising
the surface to 300-m latitude–depth fingerprint (Fig. 5). In the
HIST MMM, the TEMPAC changes yield positive S/N ratios
in each layer and for each value of L, with S/N increasing as
the analysis period lengthens (Fig. 5a). The largest simulated

S/N values are in the uppermost 30 m, with a subsidiary S/N
maximum at ca. 150 m. Consistent with the largest local S/N
values in the upper 30 m of the Pacific, Atlantic, and Indian
Oceans (Fig. 3), the earliest detection of the “individual level”
TEMPAC fingerprint from the MMM field is in the layers
above 30 m (Fig. 5a). As depth increases below 30 m, finger-
print detection occurs later in time. The change in detection
time with increasing depth is not monotonic. In the individual-
level analysis, fingerprint detection in the MMM invariably
occurs before 2010.

The S/N patterns in Fig. 5a show significant values in all
analyzed layers. The layer above 30 m has the largest S/N. The
“individual level” S/N analysis suggests that both the enhance-
ment and weakening of TEMPAC are statistically significant}
both the surface–30- and 30–300-m layers of the ocean contribute
to our robust detection of the “all depths” fingerprint in different
observational datasets and in each HIST realization (see Fig. 4c).

Projecting the observational-average TEMPAC changes
(averaged over the IAP, Ishii, and EN4 datasets) onto the
MMM “individual layer” fingerprints yields S/N results that
are qualitatively consistent with the model S/N (Fig. 5b). The
S/N ratio for the observational average is characterized by

FIG. 5. “Individual layer” fingerprint analysis of TEMPAC changes for three basins (Atlantic, Pacific, and Indian Oceans). (a) Time
scale–dependent S/N ratios for individual depth levels based on the fingerprint from HIST MMM for the period 1980–2022. The analysis is
conducted for 11 individual layers, from the surface to 300-m depth. Stippling denotes layers and time scales for which the S/N analysis
yields continuous exceedance of the 5% significance threshold. (b) S/N ratios based on the average of the three observation-based datasets:
IAP, Ishii, and EN4. (c) The standard deviations of distributions of L-year trends in noise time series, inferred from the projection of the
control run TEMPAC data onto the individual layer fingerprints. (d)–(f) S/N ratios based on IAP, Ishii, and EN4, respectively. The three
ocean basins are analyzed jointly rather than individually in all analyses shown in this figure.
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distinct layers of high values: an “upper layer” (0–30 m) and
an “interior layer” (75–300 m). As expected, the observation-
based S/N ratio is considerably lower than in the model results
because the observations have only one manifestation of inter-
nal variability}i.e., internal variability is not being damped by
averaging over realizations and models.

In both the simulations and observations, the complex
structure of S/N as a function of depth reflects changes in
the relative strengths of signal and noise. The individual layer
fingerprinting (Fig. 5c) and the local S/N analysis (Figs. 3d–f)
both reveal that the amplitude of the noise decreases abruptly
below around 50 m. This is favorable for the detection of
forced signals penetrating deeper into the ocean during winter
(see section 5).

We also searched for the same model-predicted individual
layer fingerprints in the three observational datasets (Figs. 5d–f).
The S/N ratios obtained with the IAP and Ishii datasets are simi-
lar. A small difference is in the detection year in the interior
layer: the IAP dataset yields a similar detection year in the upper
layer and interior layer, while detection is delayed by ca. 5 years
in the interior layer in the Ishii dataset (Figs. 5d,e). Many of the
XBT, MBT, Bottle data sources used in our three observational
products have positive biases. IAP implemented bias corrections
for some of these issues, which likely contributes to the IAP ver-
sus Ishii S/N differences in Figs. 5d and 5e. As in the all-depth
fingerprint analysis, the EN4 dataset shows S/N behavior dis-
tinctly different from that in IAP, Ishii, and the model simula-
tions (Fig. 5f). The S/N ratios for EN4 have opposite signs in the
upper layer and interior ocean and only show significant, positive
values in the interior. Comparing the all-depth fingerprint with
the trend pattern from the EN4 dataset (cf. Figs. 1g–i and 2a–c)
reveals that the discrepancy between EN4 and other datasets
arises mainly from the midlatitude Pacific and Atlantic in the sur-
face layer. These mismatches between the patterns of TEMPAC

change in EN4 and in the model fingerprint contribute to the
small and nonsignificant S/N ratios obtained in the surface layer
for EN4 (Fig. 5f).

5. Physical mechanisms

We seek to understand the physical mechanisms that drive
the TEMPAC changes described above. The midlatitude am-
plification of SSTAC is linked to changes in MLD in the NH
(Dwyer et al. 2012; Alexander et al. 2018; Jo et al. 2022; Shi
et al. 2024) and to changes in wind stress in the SH. The change
in the annual cycle of upper-ocean temperature found here is
consistent with the SSTAC results. Our focus, therefore, is on
the subsurface, particularly on possible physical mechanisms re-
lated to the weakening of the annual cycle within the seasonal
thermocline.

Relevant process information is available in the changes in
NH monthly mean temperature in CMIP6 models and two
datasets (IAP and Ishii; see Fig. 6). The long-term warming
trend for summertime is markedly larger than that of the win-
tertime in the surface layer, resulting in the enhancement of
the annual cycle (Figs. 6a,d,g). In contrast, for the interior
layer, the increase in temperature during wintertime is larger
than during summertime. This winter warming is mixed down

to the deeper winter mixed layer. The consistency of these sea-
sonal temperature changes in models and observations suggests
that the weakening of TEMPAC in the interior layer is associ-
ated with the penetration to depth of surface warming associ-
ated with the deep wintertime mixed layer.

A comparison of the vertical profiles of winter and summer
temperature supports this mechanism (Figs. 6b,e,h). During sum-
mer, the ocean warming below the strong vertical gradient of
temperature (i.e., seasonal thermocline) is weaker, as warming is
confined to the shallow summer mixed layer (dashed curves in
Figs. 6c,f,i). During winter, however, the warming penetrates
much deeper with a relatively uniform vertical distribution within
the winter mixed layer. The wintertime warming in models and
observations is therefore larger than the more surface-trapped
summertime warming in the depth range corresponding to the
seasonal thermocline (Figs. 6c,f,i). This winter–summer warming
difference in the interior layer is smaller in the HIST runs than in
observations, because the simulated warming at this level is
larger than observed during summer, which in turn is likely
related to too strong diffusion of upper-layer warming into
the interior ocean, and varying MLDs among the simulations
and models. Multidecadal internal variability in observations}
which is damped by averaging over realizations and models
in the HIST MMM}must also contribute to the winter–
summer warming difference between models and observa-
tions (Po-Chedley et al. 2021, 2022).

6. Contributions from individual external forcings

We use CMIP6 single-forcing simulations to isolate and
quantify the individual contributions of well-mixed GHGs,
AER, and volcanic eruptions and solar variability (NAT) to
the above-described TEMPAC changes in the HIST simula-
tions. Consistent with the approach in Shi et al. (2024), contri-
butions of individual external forcings to the time-evolving
TEMPAC changes obtained with the GHG, AER, and NAT
single-forcing simulations are all regressed onto the same
HIST fingerprint pattern (Figs. 2a–c).

In 84% and 73% of the GHG and AER simulations (re-
spectively), the S/N exceeds the 5% threshold by the end of
the single-forcing run in 2020 (Figs. 7a,b). The S/N ratios for
the GHG and AER cases increase nearly linearly with in-
creases in time scale L. In contrast, the S/N results for SSTAC

change due to AER forcing showed markedly nonlinear be-
havior over the longer analysis period of 1950–2014 in Shi
et al. (2024). The nonlinearity in SSTAC is related to nonlinear
changes in emissions of SO2, with increasing emissions from
the late 1950s to the 1970s followed by a reduction in SO2

emissions from North America and Europe after the 1980s
(Deser et al. 2020; Bonfils et al. 2020; Shi et al. 2022, 2023).
The linear behavior of TEMPAC seen here is consistent with
the more linear change in SO2 emissions over our shorter
1980–2022 analysis period (Fig. 7b). The AER forcing aug-
ments the GHG signal due to the above-noted post-1980 re-
duction of aerosol emission in the North America and Europe
(Shi et al. 2022, 2023).

The contribution from AER forcing to the total S/N ratios
found here is appreciable. For example, the S/N ratio from

S H I E T A L . 16031 APRIL 2025

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 03/18/25 06:54 PM UTC



FIG. 6. Monthly mean ocean temperature changes averaged over 158–608N. Results are the difference between the first 20 years of our
primary 43-yr analysis period (1980–99 average) and the last 20 years (2003–22 average). (a),(d),(g) Monthly differences estimated from
HIST MMM, IAP, and Ishii. The gray contours denote the climatology of ocean temperature over the full 43-yr analysis period. Black and
red curves are MLD from the first 20 years and the last 20 years, respectively. The dashed horizontal lines show the annual mean MLD in
the two 20-yr periods. (b),(e),(h) The vertical profile of winter (solid curve) and summer (dashed) temperature from HIST MMM, IAP, and
Ishii. Black and red curves are mean temperature from the first 20 years and the last 20 years, respectively. (c),(f),(i) TEMP changes be-
tween the first 20 years and the last 20 years for winter (solid curve) and summer (dashed curve).
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the AER MMM reaches 2.43 by the end of 2020, compared
with 3.63 for the GHGMMM. Relative to the S/N result from
HIST (6.85), GHG and AER forcings contribute 53% and 35%,
respectively. It is worth noting here that in our previous work
with SSTAC, linear additivity was a reasonable assumption}
i.e., the sum of the S/N contributions from individual forcings
was very similar to the S/N result obtained in the HIST “all
forcings” case (Shi et al. 2024). The detection year in the
MMM is five years earlier for GHG (ca. 2005) than for AER
(ca. 2010).

For the NAT single-forcing integration, only 27% of the
S/N ratios for the individual realizations yield statistically signifi-
cant results (Fig. 7c). This implies that any long-term (multide-
cadal) effect of volcanic and solar forcing on TEMPAC change
is relatively small and is probably due to the timing of two large
volcanic eruptions (El Chichón and Pinatubo) relative to the
length of the analysis period. The previously mentioned effect
of Pinatubo on signal trends and S/N ratios (see Figs. 4a,c) is
also evident in NAT.

7. Sensitivity tests

a. Sensitivity to the analysis period

The first sensitivity test we performed was to explore the
impact of the choice of analysis period on the fingerprint re-
sults. The observational datasets examined here provide esti-
mates of ocean temperature from 1940 onward for IAP data
and even from as early as 1900 for EN4 data. These early ob-
servations are highly uncertain due to poor spatial coverage,
particularly at depth (Good et al. 2013). Our primary analysis
period, 1980–2022, has adequate continuous coverage for esti-
mating large-scale ocean temperature changes. In the follow-
ing, we also show the S/N results for a longer analysis period
(1960–2022) and for a shorter period (1990–2022).

The spatial structure of the fingerprint patterns estimated for
the 1960–2022 and 1990–2022 periods (not shown) does not
change markedly relative to the fingerprint shown in Figs. 2a–c
for 1980–2022. This is consistent with the temporal stability of
the TTAC fingerprint pattern in previous studies (Santer et al.

2018, 2022). For 1960–2022, the fingerprint of long-term
changes in TEMPAC is identifiable in all HIST realizations and
in all three observational datasets (Fig. 8a). As in the case of
our baseline 1980–2022 analysis period, S/N ratios calculated
by projecting IAP and Ishii TEMPAC data onto the searched-
for fingerprint are near the lower end of the model results for
the longest trends. EN4 remains an outlier, with an S/N ratio
for the longest (63-yr) analysis period that is markedly lower
than in IAP, Ishii, or any of the model realizations, and with
substantially different time evolution of S/N.

Note that S/N results for 1960–2022 are larger than those
for 1980–2022 (cf. Figs. 4c and 8a). This is primarily due to the
reduction in noise amplitude with increasing length of the
analysis period (see Fig. 4b). Detection times for 1960–2022
are close to the year 2000, except in the case of EN4, and are
consistent with the detection times estimated with the shorter
1980–2022 analysis period. Similar detection time results are
obtained for 1990–2022 (Fig. 8b). As for the two longer peri-
ods, fingerprint detection occurs in every model HIST realiza-
tion and observational dataset. For S/N ratios calculated over
the full 1990–2022 period, results obtained with the Ishii data-
set are close to the center of the spread of model results, and
EN4 results are now close to those of IAP and less of an out-
lier than for longer analysis periods.

b. Sensitivity tests with annual cycle changes in individual
ocean basins

It is of interest to determine how our overall fingerprint re-
sults for global-scale changes in TEMPAC are influenced by
the annual cycle behavior in individual ocean basins. As shown
in Figs. 4c and 8, the S/N ratios for the longest analysis periods
are generally smaller in observational data than in the HIST
MMM and are close to the lower end of the spread obtained
from individual model HIST realizations. The possible causes
of such differences include the effects of climate sensitivity and
multidecadal internal variability and (Po-Chedley et al. 2021,
2022; Santer et al. 2022; Shi et al. 2024). Our test here examines
the separate contributions to these systematic differences aris-
ing from TEMPAC changes in the Atlantic and Pacific.

FIG. 7. S/N ratios from CMIP6 single-forcing runs: (a) GHG, (b) AER, and (c) NAT. S/N ratios were obtained by a fingerprint analysis
involving the pattern of TEMPAC change estimated from the HIST MMM (see Fig. 2). The result from the MMM of each single-forcing ex-
periment is shown as the black curve; results from individual realizations are the gray curves. The horizontal purple line is the 5% signifi-
cance level.
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To isolate these contributions, we repeated the “three
basin” fingerprint analysis shown in Figs. 2 and 4 but replaced
one basin from the observational dataset with the TEMPAC

changes from each simulation for that basin. For example, in
the “Atlantic” sensitivity test with the EN4 dataset, we replaced
the EN4 Atlantic field with simulated TEMPAC fields from
each of the 51 HIST realizations, while preserving the original
EN4 TEMPAC changes in the Pacific and Indian Ocean Basins.
This approach provides 51 “hybrid” TEMPAC fields, each con-
taining a different simulated Atlantic TEMPAC field and the
original Pacific and Indian fields from EN4. We use each of
these 51 hybrid fields in our S/N analysis; a similar proce-
dure is employed for the sensitivity test involving TEMPAC

changes in the Pacific Ocean Basin. By comparing the re-
sults from the hybrid “replace one basin” approach with the
original S/N results, we can identify the influence of each ba-
sin on the model-observed S/N differences in Fig. 4.

Compared to the baseline analysis in Fig. 4c, replacing the
observed Atlantic TEMPAC field with model results mark-
edly increases the S/N ratios estimated with IAP, Ishii, and
EN4 (Fig. 9a). For the longest analysis periods, the ensemble
average of the hybrid S/N results is now closer to the CMIP6
ensemble-mean S/N, particularly in the case of IAP. EN4}
which was an outlier in the baseline S/N analysis in Fig. 4c}is
now within the range of the original model S/N results. In con-
trast, replacing the observed TEMPAC changes in the Pacific
with model simulation output yields smaller S/N increases rela-
tive to the baseline results, and observed S/N behavior remains
systematically lower than in CMIP6 (cf. Figs. 4c and 9b). These
results indicate that the observed Atlantic TEMPAC changes are
probably the dominant contributory factor to the overall model-
observed S/N differences in our baseline analysis (Fig. 4c).
This result is consistent with the pattern differences between
Figs. 1b,e,h and 2b: the observed trends are positive in the mid-
latitudes and in the interior layer of the North Atlantic, whereas
the simulated fingerprint pattern shows a broad weakening of
TEMPAC. Replacing the observed North Atlantic field (not

shown) gives rise to results similar to those in Fig. 9a. While
the South Atlantic also shows a significant model-observation
difference in the zonal-mean pattern of TEMPAC changes (cf.
Figs. 1 and 2), the contribution from the South Atlantic to the
overall S/N ratios is relatively small (see, e.g., the TTAC results
in Santer et al. 2018, 2022). This interhemispheric asymmetry
in the forced response of TEMPAC (Fig. 2) helps to explain
why TEMPAC changes in the North Atlantic have a large im-
pact on the global S/N results.

8. Conclusions

The climate system is experiencing unprecedented changes
due to anthropogenic activities (Eyring et al. 2021; Santer et al.
2023). Modification of the annual cycle of key climate variables
is a key component of such changes. This study has systemati-
cally investigated changes in the annual cycle of temperature
(TEMPAC) in the upper 300 m of the ocean. To study the
causes of these changes, we employ a standard pattern-based
detection and attribution (D&A) approach that relies on obser-
vational datasets and the latest CMIP6 model simulations of
forced and unforced climate change. We examine the latitude–
depth basin structure and causes of TEMPAC changes, which
have received relatively little attention to date.

Our D&A analysis confirms the existence of human influ-
ence on TEMPAC. The large-scale latitude–depth basin struc-
ture of TEMPAC changes over 1980–2022 is broadly consistent
across CMIP6 models and observations, with a robust increase
in the annual cycle amplitudes at the surface and a notable
decrease within the subsurface ocean, particularly at certain
depths and regions. In the surface layer (above 30 m), the
amplification of the annual cycle is much stronger in the mid-
latitudes of the NH, which is linked to the shoaling of the
mixed layer (Shi et al. 2024). There is a distinctive meridional
dipole structure at SH midlatitudes. The near-surface TEMPAC

results are physically and internally consistent with results
from previous studies of changes in the annual cycle of tropo-
spheric temperature (TTAC; Santer et al. 2018) and SSTAC

FIG. 8. As in Fig. 4c, but for analysis periods of (a) 1960–2022 and (b) 1990–2022. The fingerprints are calculated over
1960–2022 and over 1990–2022, respectively.
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(Shi et al. 2024). A more novel aspect of our finding is that
deep-reaching winter mixing transmits the surface warming
signal to the bottom of the seasonal thermocline and warms
winter temperatures, while in summer, the strengthening of
the seasonal thermocline traps warming near the surface,
thus increasing summer high temperatures at the surface.
These changes result in increased TEMPAC at the surface
and decreased TEMPAC in the deeper seasonal thermocline
(between approximately 75–300 m).

We find that the fingerprint of externally forced TEMPAC

changes in CMIP6 simulations of historical climate change is
identifiable with high statistical confidence in three different
observational datasets and in 51 individual model realizations.
Our analysis of single-forcing experiments indicates that human-
caused changes in greenhouse gas emissions and anthropogenic
aerosols are responsible for roughly 53% and 35% of the histori-
cal TEMPAC changes (respectively). Sensitivity analyses reveal
that our identification of human influence on TEMPAC is robust
to choices of analysis period either longer or shorter than our
1980–2022 baseline period.

There are, however, still discrepancies between S/N ratios
obtained with modeled and observed TEMPAC changes, par-
ticularly for changes over the 1980–2022 period of primary in-
terest here. Observation-based S/N ratios are systematically
lower than “model only” S/N ratios (see Fig. 4c). We find that
this discrepancy arises primarily from differences between
model and observed TEMPAC changes in the Atlantic. Our
study also highlights large discrepancies between the latitude–
depth structure of TEMPAC changes in the three observa-
tional datasets analyzed here, particularly between EN4 and
the other two datasets (IAP and Ishii). Further investigation
of the causes of this large structural uncertainty in observed
ocean temperature data is urgently required.

Taken together with earlier work on tropospheric tempera-
ture (Santer et al. 2018, 2022) and SST (Shi et al. 2024), the

changes in the vertical and latitudinal structure of TEMPAC

found here clearly show that anthropogenic impacts on the
annual cycle are now detectable throughout the climate sys-
tem, from the upper troposphere to the permanent ocean
thermocline. These changes have a distinctive spatial and ver-
tical structure and have the potential to influence both the
productivity and distribution of marine species. For example,
the habitat range of temperature-sensitive marine organisms
is likely to be affected by the anthropogenically driven subsur-
face annual cycle changes identified here. Our findings of ro-
bust changes in the seasonality of ocean temperature may
also have important implications for other biological and
chemical properties of the ocean, such as ocean color and the
uptake of oxygen and CO2 by the world’s oceans. D&Ameth-
ods provide a useful framework for examining whether such
changes in marine biogeochemistry are consistent with the
physical changes in ocean temperature reported here.
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FIG. 9. S/N ratios for sensitivity tests involving replacement of observed TEMPAC changes with model results.
(a) Replacing each of the observed Atlantic TEMPAC fields (i.e., IAP, Ishii, and EN4) with results from the HIST
simulations. (b) As in (a), but with replacement of the observed Pacific TEMPAC data with model results. The thicker
dashed curves are the ensemble average of the “hybrid” results. The solid thick black curves and solid thin gray curves
are identical to the original HIST S/N results in Fig. 4c and provide a reference for the magnitude of the S/N change
arising from the sensitivity tests.
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