Skip to content

Integrated Ocean Dynamics and Acoustics (IODA)

DoD MURI ocean research project website

Project Overview

Long Term Goal: IODA is an integrated ocean fluid physics and acoustics study with the goal of creating a broadly applicable and portable continental shelf-area acoustic prediction capability that includes the effects of internal and surface gravity waves as well as effects of subtidal large-scale processes.

Objective: The objective is to improve ocean physical state and acoustic state predictive capability. Specific short-term project objectives are the completion of targeted studies of the relevant oceanographic processes, acoustic propagation processes, and acoustic scattering processes, plus the development of improved computational tools for the physical regimes identified to be important.

The motivation for the project is that regional environmental modeling and acoustic or sonar modeling can occur in disconnected fashion. If the environmental models are optimized for other purposes, they may not provide environmental inputs that are essential to predictive acoustic models. Research into what the relevant environmental factors are, and how to best model them, and how to pass the information to acoustic models are important thrusts of the project.

Participants

University of Texas at Austin
Rutgers University
Massachusetts Institute of Technology
University of Delaware
Rennselaer Polytechnic Institute
Colorado School of Mines
Naval Postgraduate School
Florida Institute of Technology

Grant information

This grant was awarded in MURI TOPIC # 6, "Integrated Oceanographic, Atmospheric, and Acoustic Physics", in Office of Naval Research BAA 10-026

IODA Project Personnel

 

Principal Investigators

Tim Duda (Woods Hole Oceanographic Institution)
Jim Lynch (WHOI)
Ying-Tsong Lin (WHOI)
Karl Helfrich (WHOI)
Weifeng Gordon Zhang (WHOI)
Harry Swinney (University of Texas at Austin)
John Wilkin (Rutgers University)
Pierre Lermusiaux (Massachusetts Institute of Technology)
Nick Makris (Massachusetts Institute of Technology)
Dick Yue (Massachusetts Institute of Technology)
Mohsen Badiey (University of Delaware)
Bill Siegmann (Rennselaer Polytechnic Institute)
Jon Collis (Colorado School of Mines)
John Colosi (Naval Postgraduate School)
Steven Jachec (Florida Institute of Technology)

Additional key investigators

Matt Paoletti (U. Texas)
Julia Levin (Rutgers)
Yuming Liu (MIT)
Arthur Newhall (WHOI)
Likun Zhang (U. Texas)
Michael Allshouse (U. Texas)
Kaustubha Raghukumar (NPS)

Related Links

» MIT IODA homepage
Profs. P.F.J. Lermusiaux, D.K.P. Yue and N.C. Makris. Regional modeling, surface wave modeling, acoustic modeling.

» Virtual seafloor page
Dr. L. Zhang and Prof. H Swinney. Internal-tide generation dynamics.

Project Goals

Modeling tools

Goal number 1: Development of fully integrated tools for joint oceanography/acoustic study and prediction, i.e. a modeling system

Physics studies and model verification

Goal number 2: Development of an understanding of the physics of coastal linear and nonlinear internal wave generation and transformation, as observed in the model, lab and field-observed features, coupled with study of acoustical propagation in these features

IODA Project Meetings

Kickoff Workshop

June 2011
An IODA Kickoff Workshop was held at WHOI on 13-14 June 2011. Ten PI and seven other personnel attended.  Use the link above to access documents, graphics and videos.

IODA Acoustics Meeting

June 2012
A workshop of IODA Acoustics PI's was held at the University of Delaware, 12-13 June 2012. Information for this meeting can be obtained by clicking on  the link above.

IODA Physical Oceanography Meeting

March 2013
A workshop was held at WHOI on 13-14 March, 2013 to concentrate on the physical oceanography aspects of the IODA program and present a progress update for the program. To access the information and presentations from the meeting, please click on the link above

IODA Project Meeting

 August 2014
Progress reports and planning for the final 21 months of activity. This meeting was held at Woods Hole Oceanogrpahic Institution, 26-27 August 2014.

IODA Project Meeting

December 2015
Held at Woods Hole Oceanographic Institution, 3-4 December 2015.

Plan view of depth-averaged intensity of 200-Hz sound passing through curved internal waves in shallow water, computed with Cartesian 3D parabolic equation model. (Y-T Lin)
"Synthetic synthetic aperture radar" depiction of 3D internal tides and nonlinear nonhydrostatic internal waves from a nonhydrostatic simulation of barotropic/baroclinic conversion in a canyon

Internal

Project newsletters and other documents

Newsletters are in the internal password protected area and are available to the participants only.

February 2012 Newsletter

Screen shot of the 3D parabolic equation solver user monitor while modeling underwater sound fields.

Screen shot of the 3D parabolic equation solver user monitor while modeling underwater sound fields. (IODA Acoustic Model Group)

The first IODA Newsletter is available and can be viewed  here as a pdf.

Also, there are two supplementary files. Tim and YT's Task 5 work (seen below) can be viewed as an external image file  (also to the right). Mohsen has a movie which supplements his figure 4 in the newsletter.

 

Publications

Articles, Conference Papers, and Reports

As of 1 October 2019

Listing:

Peer reviewed publication

  1. Allshouse, M. R., F. M. Lee, P. J. Morrison and H. L. Swinney, Internal wave pressure, velocity and energy flux from density perturbations, Phys. Rev. Fluids 1, 014301, 2016.
  2. Aoussou, J., J. Lin, and P. F. J. Lermusiaux, Iterated Pressure-Correction Projection Methods for the Unsteady Incompressible Navier-Stokes Equations. Journal of Computational Physics, 373, 940–974. https://doi.org/10.1016/j.jcp.2018.06.062. http://mseas.mit.edu/publications/PDF/Aoussou_et_al_JCP2018.pdf
  3. Badiey, M., L. Wan and J. J.  Luo,. Shallow water modal evolution due to nonlinear internal waves, Marine. Sci. Appl., 16, 362, https://doi.org/10.1007/s11804-017-1415-9, 2017.
  4. Badiey, M., L. Wan and J. F. Lynch, Statistics of nonlinear internal waves during the Shallow Water 2006 experiment, J. Atmos. Oceanic Technol., 33. 839-846, doi: 10.1175/JTECH-D-15-0221.1, 2016.
  5. Badiey, M., L. Wan and A. Song, Three-dimensional mapping of internal waves during the Shallow Water 2006 experiment, J. Acoust. Soc. Am., 134, EL7-EL13, dx.doi.org/10.1121/1.4804945, 2013.
  6. Cox, C. S., X. Zhang and T. F. Duda, Suppressing breakers with polar oil films: Using an epic sea rescue to model wave energy budgets, accepted, Geophys. Res. Lett., 44, 1414-1421, 10.1002/2016GL071505, 2017.
  7. DeCourcy, B. J., Y.-T. Lin, and W. L. Siegmann, Approximate formulas and physical
    interpretations for horizontal acoustic modes in a shelf-slope front model, J. Acoust. Soc.
    Am., 140, EL20-25, https://doi.org/10.1121/1.4954881, 2016.
  8. DeCourcy, B. J., Y.-T. Lin, and W. L. Siegmann, Estimating the parameter sensitivity of
    acoustic mode quantities for an idealized shelf-slope front, J. Acoust. Soc. Am., 143, 706-
    715, https://doi.org/10.1121/1.5022776, 2018.
  9. Dettner, A., H. L. Swinney, and M. S. Paoletti, Internal wave and boundary current generation by tidal flow over topography, Physics of Fluids, 25, 1-15, doi.org/10.1063/1.4826984, 2013.
  10. Duda, T. F., Modeling and forecasting ocean acoustic conditions, for The Sea, Ideas and Observations on Progress in the Study of the Seas, The Science of Ocean Prediction. Editors N. Pinardi, P. Lermusiaux and K. Brink. Sears Foundation for Marine Research Publications, New Haven, CT., accepted for publication, 2017.
  11. Duda, T. F., Y.-T. Lin and D. B. Reeder, Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range, J. Acoust. Soc. Am., 130, 1173-1187, dx.doi.org/10.1121/1.3605565, 2011.
  12. Duda, T. F., Y.-T. Lin, A. E. Newhall, K. R. Helfrich, J. F. Lynch, W. G. Zhang, P. F. J. Lermusiaux, and J. Wilkin, Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction, J. Acoust. Soc. Am., 146, 1993-2012, https://doi.org/10.1121/1.5126012, 2019.
  13. Emerson, C., J. F. Lynch, P. Abbot, Y.-T. Lin, T. F. Duda, G. G. Gawarkiewicz, and C.-F. Chen, Acoustic propagation uncertainty and probabilistic prediction of sonar system performance in the southern East China Sea continental shelf and shelfbreak environments, IEEE J. Oceanic Eng., 40, 1003-1017, http://dx.doi.org/10.1109/JOE.2014.2362820, 2015
  14. Gong, Z., T. Chen, P. Ratilal, and N. C. Makris, Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves, J. Acoust. Soc. Am., 134, 3476-3485, 2013.
  15. Grimshaw, R., C. Guo, K. Helfrich, and V. Vlasenko, Combined effect of rotation and topography on shoaling oceanic internal solitary waves, J. Phys. Oceanogr., 44, 1116-1132, 2014.
  16. Haley, P. J. Jr., A. Agarwal, and P. F. J. Lermusiaux, Optimizing velocities and transports for complex coastal regions and archipelago. Ocean Modeling, 89, 1-28, 2015.
  17. Heaney, K. D., P. F. J. Lermusiaux, T. F. Duda and P. J. Haley, Validation of genetic algorithm based optimal sampling for ocean data assimilation, Ocean Dynamics, 66, 1209- 1229, 10.1007/s10236-016-0976-5, 2016.
  18. Kelly, S. M., and P. F. J. Lermusiaux, Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front, J. Geophys. Res. Oceans, 121, 6271–6294, http://dx.doi.org/10.1002/2016JC011639. 2016.
  19. Kelly, S. M., P. F. J. Lermusiaux, T. F. Duda and P. J. Haley, A Coupled-mode Shallow Water model for tidal analysis: Internal-tide reflection and refraction by the Gulf Stream, J. Phys. Oceanogr., 46, 3661-3679, http://dx.doi.org/10.1175/JPO-D-16-0018.1, 2016.
  20. Kiara, A., K. Hendrickson and D. K. P. Yue, SPH for incompressible free-surface flows. Part II: Performance of a modified SPH method, Computers and Fluids, 86, 510-536, dx.doi.org/10.1016/j.compfluid.2013.07.016, 2013.
  21. King, B., M. Stone, H. P. Zhang, T. Gerkema, M. Marder, R. B. Scott, and H. L. Swinney, Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans, J. Geophys. Res. (Oceans) 117, C04008, dx.doi.org/10.1029/2011JC007681, 2012.
  22. Lee, F. M., M. S. Paoletti, H. L. Swinney, and P. J. Morrison. Experimental determination of radiated wave power without pressure field data, Physics of Fluids, 26, 046606, doi: 10.1063/1.4871808, 2014.
  23. Y.-T. Lin, Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation, J. Acoust. Soc. Am., 146, 2055-2064 10.1121/1.5126011, 2019.
  24. Lin, Y.-T. and T. F. Duda, A higher-order split-step Fourier parabolic-equation sound propagation solution scheme, J. Acoust. Soc. Am., 132, EL61-EL67, 2012.
  25. Lin, Y.-T., J. M. Collis, and T. F. Duda, A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants, J. Acoust. Soc. Am., 132, EL364-370, dx.doi.org/10.1121/1.4754421, 2012.
  26. Lin, Y.-T., T. F. Duda, and A. E. Newhall, Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method, J. Comput. Acoust., 21, 1250018, dx.doi.org/10.1142/S0218396X1250018X, 2013.
  27. Lin, Y.-T., T. F. Duda, C. Emerson, G. Gawarkiewicz, A. E. Newhall, B. Calder, J. F. Lynch, P. Abbot, Y.-J. Yang and S. Jan, Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan, IEEE J. Oceanic Eng., 40, 237-249, 2014, http://dx.doi.org/10.1109/JOE.2013.2294291.
  28. Lin, Y.-T, K. G. McMahon, J. F. Lynch, and W. L. Siegmann, Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas, J. Acoust. Soc. Am., 133, 37-49,  dx.doi.org/10.1121/1.4770240, 2013.
  29. Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, The unpredictable nature of internal tides and nonlinear waves on the continental shelf, J. Phys. Oceangr., 42, 1981-2000, dx.doi.org/10.1175/JPO-D-12-028.1, 2012.
  30. Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, Are any coastal internal tides predictable? Oceanography, 25, 80-95, http://dx.doi.org/10.5670/oceanog.2012.44, 2012.
  31. Pan, Y. and D. Yue, Direct numerical investigation of turbulence of capillary waves, Phys. Rev. Lett., 113, 094501, 2014.
  32. Pan, Y. & Yue, D. 2015 Decaying capillary wave turbulence under broad-scale dissipation. J. Fluid Mech., 780.
  33. Paoletti, M. S., and H. L. Swinney, Propagating and evanescent internal waves in a deep ocean model, J. Fluid Mech., 108, 148101, dx.doi.org/10.1017/jfm.2012.284, 2012.
  34. Paoletti, M. S., M. Drake, and H. L. Swinney, Internal tide generation in nonuniformly stratified deep oceans, J. Geophys. Res. Oceans, 119, 1953-1956, http://dx.doi.org/10.1002/2013JC009469, 2014.
  35. Raghukumar, K., and J. A. Colosi, High frequency normal mode statistics in a shallow water waveguide: The effect of random linear internal waves, J. Acoust. Soc. Am. 136 , 66-79, http://dx.doi.org/10.1121/1.4881926, 2014.
  36. Raghukumar, K., and J. A. Colosi, High frequency normal mode statistics in shallow water: The combined effect of random surface and internal waves, J. Acoust. Soc. Am. 137, 2950-2961, http://dx.doi.org/10.1121/1.4919358, 2014.
  37. Shmelev, A, A., J. F. Lynch, Y.-T. Lin,  and H. Schmidt: Three-dimensional coupled mode analysis of internal-wave acoustic ducts, J. Acoust. Soc. Am., 135, 2497-2512 http://dx.doi.org/10.1121/1.4869847, 2014.
  38. Subramani, D. N., P. J. Haley Jr., and P. F. J. Lermusiaux, Energy-optimal path planning in the coastal ocean, J. Geophys. Res. Oceans, 122, 3981–4003, doi:10.1002/2016JC012231., 2017.
  39. Subramani, D. N. and P. F. J. Lermusiaux, 2015. Energy-based path planning by stochastic dynamically orthogonal level-set optimization. Ocean Modeling, 100, 57-77, 2016.
  40. Subramani D.N., Lolla T., Haley P.J., Lermusiaux P.F.J.,A Stochastic Optimization Method for Energy-Based Path Planning. In: Ravela S., Sandu A. (eds) Dynamic Data-Driven Environmental Systems Science. Lecture Notes in Computer Science, vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_31, 2015
  41. Tran, D. D., M. Andrews, and P. Ratilal, Probability distribution for energy of saturated broadband ocean acoustic transmission: Results from Gulf of Maine 2006 Experiment, J. Acoust. Soc. Am., 132, 3659-3672, 2012.
  42. Ueckermann, M. P. and P. F. J. Lermusiaux, Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. J. Comput. Phys., 306, 390-421, https://doi.org/10.1016/j.jcp.2015.11.028, 2016.
  43. Xiao, W., Y. Liu, G. Wu and D. K. P. Yue, Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution, J. Fluid Mech., 720, 357-392, 2013.
  44. Zhang, L. and H. L. Swinney, Virtual seafloor reduces internal wave generation by tidal flow, Phys. Rev. Lett., 112, 104502 doi: 10.1103/PhysRevLett.112.104502, 2014.
  45. Zhang, L., M. C. Buijsman, E. Comino, and H. L. Swinney, Internal wave generation by tidal flow over periodically and randomly distributed seamounts, J. Geophys. Res. Oceans, 122, 5063–5074, doi:10.1002/2017JC012884, 2017.
  46. Zhang, W. G. and T. F. Duda, Intrinsic nonlinearity and spectral structure of internal tides at an idealized Mid-Atlantic Bight shelfbreak, J. Phys. Oceanogr., 43, 2641-2660, 2013.
  47. Zhang, W. G., T. F. Duda, and I. A. Udovydchenkov, Modeling and analysis of internal-tide generation and beam-like onshore propagation in the vicinity of shelfbreak canyons, J. Phys. Oceanogr., 44, 834-849, 2014.

Other publications

  1. Badiey, M., , L. Wan, and A. Song, Time-varying three-dimensional mapping of internal waves during the Shallow Water 2006 experiment, Proc. Mtgs. Acoust. 19, 070021, https://doi.org/10.1121/1.4799133, 2013.
  2. Colin, M. E. G. D., T. F. Duda, L. A. te Raa, T. van Zon, P. J. Haley Jr., P. F. J. Lermusiaux, W. G. Leslie, C. Mirabito, F. P. A. Lam, A. E. Newhall, Y.-T. Lin , and J. F. Lynch, Time-evolving acoustic propagation modeling in a complex ocean environment, in Proceedings of Oceans ’13 (Bergen) Conference, IEEE/MTS, 2013.
  3.  DeCourcy, B. J., Parameter Sensitivity of Acoustic Propagation in Models of Curved Fronts Over Uniform Slopes,Rensselaer Polytechnic Institute, PhD Dissertation, 2017.
  4. Duda, T. F., Theory and observation of anisotropic and episodic internal wave effects on 100-400 Hz sound, in Proceedings of the International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, Kos, Greece, pp. 999-1006, 2011.
  5. Duda, T. F., Plenary presentation: Identifying and meeting new challenges in shallow-water acoustics, in Proceedings of Acoustics 2013 (AAS2013), Science, Technology and Amenity, Australian Acoustical Society, 2013.
  6. Duda, T. F., B. D. Cornuelle and Y.-T. Lin, Quantifying acoustic field horizontal variability and acoustic system performance in a canyon with internal tides, in Acoustic & Environmental Variability, Fluctuations and Coherence Conference Proceedings, Cambridge, UK, Institute of Acoustics, 2016.
  7. Duda, T., Y.-T. Lin and B. D. Cornuelle, Scales of time and space variability of sound fields reflected obliquely from underwater slopes, Proc. Meet. Acoust., 19, 070025, 2013.
  8. Duda, T. F., Y.-T. Lin, A, E, Newhall, K. R. Helfrich, W. G. Zhang, M. Badiey, P. F. J. Lermusiaux, J. A, Colosi and J. F. Lynch, The “Integrated Ocean Dynamics and Acoustics” (IODA) hybrid modeling effort, in Proceedings of the 2nd International Underwater Acoustics Conference, Rhodes, Greece, 2014.
  9. Duda, T. F., W. G. Zhang, and Y.-T.-Lin, Studies of internal tide generation at a slope with nonlinear and linearized simulations: Dynamics and implications for ocean acoustics, in Proceedings of Oceans ’12 (Hampton Roads) conference, MTS/IEEE, 2012
  10. Duda, T. F., W. G. Zhang, K. R. Helfrich, A. E. Newhall, Y.-T. Lin, and J. F. Lynch, Issues and progress in the prediction of ocean submesoscale features and internal waves, in Proceedings of Oceans ‘14 (St. John’s) conference, IEEE/MTS, 2014. (9 pp.)
  11. Duda, T. F., W. G. Zhang, K. R. Helfrich, Y.-T. Lin and A. E. Newhall, Modeling internal solitary wave development at the head of a submarine canyon, for 8th International Symposium on Stratified Flows (ISSF), San Diego, CA, USA, 2016.
  12. Lynch, J. F., T. F. Duda and J. A. Colosi, Acoustical horizontal array coherence lengths and the “Carey Number”, Acoustics Today, 10, 10-19, http://dx.doi.org/10.1121/1.4870172, 2014.
  13. Lynch, J. F., T. F. Duda, W. L. Siegmann, J. Holmes and A. E. Newhall, The Carey Number in shallow water acoustics, in Proceedings of the 1st International Underwater Acoustics Conference, Corfu, Greece, 2013.
  14. Lynch, J. F., Y.-T. Lin, T. F. Duda and A. E. Newhall , Characteristics of acoustic propagation and scattering in marine canyons, in Proceedings of the 1st International Underwater Acoustics Conference, Corfu, Greece, 2013.
  15. Nash, J., S. Kelly, E. Shroyer, J. Moum and T. Duda, The unpredictability of internal tides in coastal seas, In Proc. 7th International Symposium on Stratified Flows, Rome, Italy, 2011.
  16. Phadnis, A., Uncertainty Quantification and Prediction for Non-autonomous Linear and Nonlinear Systems. SM Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, July 2013.
  17. Raghukumar, K., and J. A. Colosi, The effect of surface and linear internal waves on higher order acoustic moments in shallow water, Proc. Meet. Acoust., 19, 070022, 2013.
  18. Sroka, S. G., Internal Tides Near Steep Topographies, MS Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, Sept. 2016.

Related Files

» AGU OS 2014 Poster
Short version of poster, Asymmetrical generation of internal tides at canyons. Modeling and Analysis of Internal-tide Generation and Beam-like Onshore Propagation in the Vicinity of Shelfbreak Canyons. Weifeng G. Zhang, Timothy F. Duda, Ilya A. Udovydchenkov, Woods Hole Oceanographic Institution.

Related Links

» Internal website
Home page for internal files.

» Project overview, Dec 2013 review 
pdf file. Title slide, 26 content slides

» Group activity reports, Dec 2013 review
pdf file. Title slide, 82 content slides (2-83), 16 unpresented slides (85-100)